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Interest Rates under Falling Stars†

By Michael D. Bauer and Glenn D. Rudebusch*

Macro-finance theory implies that trend inflation and the equilib-
rium real interest rate are fundamental determinants of the yield 
curve. However, empirical models of the term structure of inter-
est rates generally assume that these fundamentals are constant. 
We show that accounting for time variation in these underly-
ing long-run trends is crucial for understanding the dynamics of 
Treasury yields and predicting excess bond returns. We introduce 
a new arbitrage-free model that captures the key role that long-run 
trends play in determining interest rates. The model also provides 
new, more plausible estimates of the term premium and accurate 
out-of-sample yield forecasts. (JEL E31, E43, E47)

Researchers have made numerous attempts to connect macroeconomic vari-
ables to the term structure of interest rates using a variety of approaches ranging 
from reduced-form no-arbitrage models to fully fledged dynamic macro mod-
els.1 Despite both theoretical and empirical progress, there is no clear consensus 
about how macroeconomic information should be incorporated into yield curve 
analysis. One important link between the macroeconomy and the yield curve that 
has been largely overlooked is the connection between the time-varying long-run 
means of macroeconomic series and interest rates, that is, between their stochas-
tic trends. Specifically, macroeconomic data and models can shed light on esti-
mates of the trend in inflation (​​π​ t​ ∗​​) and the equilibrium real interest rate (​​r​ t​ ∗​​), while 
finance theory, from the Fisher equation to modern no-arbitrage theory, implies 
that such macroeconomic trends must be reflected in interest rates. Of course, the 
key outstanding issue is whether there is empirically significant variation in these 
long-run trends over time. Almost all term structure analyses in finance assume 
constant long-run means. Instead, in this paper, we document that accounting for 
changes in ​​π​ t​ ∗​​ and ​​r​ t​ ∗​​ is essential for modeling the term structure, estimating bond 
risk premia, and forecasting yields. We quantify the importance of time-varying 

1 See, among many others, Ang and Piazzesi (2003); Diebold, Rudebusch, and Aruoba (2006); Bikbov and 
Chernov (2010); and Rudebusch and Swanson (2012). A detailed survey is Gürkaynak and Wright (2012).
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macroeconomic trends for interest rates in two steps. First, using a variety of empir-
ical proxies for these shifting endpoints, we establish some stylized facts about mac-
roeconomic and interest rate trends. One of these stylized facts is the importance of 
such trends for predicting excess bond returns. Second, to account for these stylized 
facts, we introduce a new dynamic term structure model that embeds a stochastic 
interest rate trend. This no-arbitrage model provides new estimates of the long-run 
stochastic trend in Treasury yields and the term premium and accurately predicts 
interest rates out of sample. This analysis bridges an important gap between macro-
economics and finance by incorporating shifting macro-finance trends.

A simple illustration of the potential importance of macro trends for US interest 
rates is provided in Figure 1. The underlying drivers of the apparent secular decline 
in longer-term Treasury yields since the early 1980s remain contentious. Standard 
finance (no-arbitrage) models of the yield curve assume that interest rates are sta-
tionary, i.e., mean-reverting: see Kim and Wright (2005); Joslin, Singleton, and Zhu 
(2011); and Adrian, Crump, and Moench (2013), among many others. This mean 
reversion implies that expected short-term rates are invariably close to their historical 
average at horizons beyond a few years ahead. That is, the expectations component of 
long-term interest rates varies only modestly. Consequently, low-frequency variation 
in interest rates must be captured by the term premium, which is the residual differ-
ence between a long-term interest rate and its expectations component (e.g., Wright 
2011). Instead, our analysis stresses the important role of the time-varying trends 
underlying interest rates. To illustrate this role, Figure 1 displays observable proxies 

Figure 1.  Ten-Year Yield and Macroeconomic Trends

Notes: Ten-year Treasury yield and estimates of trend inflation, ​​π​ t​ ∗​​ (the mostly survey-based PTR measure from the 
Federal Reserve), the equilibrium real rate, ​​r​ t​ ∗​​ (an average of all filtered and real-time estimates, see Section I), and 
the equilibrium short rate, ​​i​ t​ ∗​  = ​ π​ t​ ∗​ + ​r​ t​ ∗​​. Shaded areas are NBER recessions. The data are quarterly from 1971:IV 
to 2018:I.
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of these trends (described further in Section I). Trend inflation, ​​π​ t​ ∗​​, measured using 
long-horizon survey forecasts, declined almost 6 percentage points from the Volcker 
disinflation of the early 1980s to the late 1990s and then remained stable around 
2  percent. In contrast, the trend or equilibrium real interest rate, ​​r​ t​ ∗​​, shown here 
as the average of different estimates, changed little early on but declined notably 
over the past two decades, likely reflecting structural changes in the global econ-
omy.2 As a result, the equilibrium nominal short-term interest rate, ​​i​ t​ ∗​  = ​ π​ t​ ∗​ + ​r​ t​ ∗​​, 
which reflects movements in both underlying macro trends, accounts for much of 
the low-frequency movements in the ten-year Treasury yield through variation in the 
expectations component. This close connection suggests that the early downward 
trend in ​​π​ t​ ∗​​ and the more recent decline in ​​r​ t​ ∗​​, that is, an environment of falling stars, 
played a major role in the secular decline in nominal interest rates.

This link between macro trends and interest rate trends is at the core of our analy-
sis. We first establish two stylized facts about macro-finance trends and yields using 
various observable proxies for these trends. First, variation in both the inflation trend 
and the equilibrium real interest rate is responsible for the very high persistence of 
interest rates. It has long been recognized that nominal interest rates of different 
maturities contain a slow-moving common trend component and are best modeled 
as cointegrated (Campbell and Shiller 1987; Hall, Anderson, and Granger 1992). 
We show that this common trend is ​​i​ t​ ∗​​ and that it is driven by quantitatively important 
fluctuations in both underlying macroeconomic trends, ​​π​ t​ ∗​​ and ​​r​ t​ ∗​​. Accounting only 
for the inflation trend on its own, as in Kozicki and Tinsley (2001) and Cieslak and 
Povala (2015), leaves a highly persistent component of interest rates unexplained. 
We show that it is necessary to include movements in ​​r​ t​ ∗​​ to fully capture the trend 
component in interest rates.

Our second stylized fact is that macro trends are crucial for understanding bond 
risk premia. Relative to the canonical predictive regressions for excess bond returns 
that forecast future excess bond returns with current yields (Fama and Bliss 1987; 
Campbell and Shiller 1991; Cochrane and Piazzesi 2005), we find that adding ​​π​ t​ ∗​​ 
and ​​r​ t​ ∗​​ as regressors provides notable gains in predictive power. Our results pro-
vide evidence against the spanning hypothesis implied by most asset pricing mod-
els, which posits that the current yield curve contains all the relevant information 
for predicting future interest rates (e.g., Duffee 2013; Bauer and Rudebusch 2017; 
Bauer and Hamilton 2018). The predictive gains we find are economically large, 
so, for example, when interest rates adjust to a lower trend, long-term bond holders 
benefit substantially, just as they did during the adjustment to a lower ​​r​ t​ ∗​​ following 
the 2008 financial crisis. Indeed, including the equilibrium real rate is especially 
important later in our sample when the inflation trend shows less variation.3

To account for these two stylized facts, we introduce a new dynamic term structure 
model (DTSM) with a shifting endpoint for interest rates. This novel no-arbitrage 

2 We use existing estimates of ​​r​ t​ ∗​​ from Laubach and Williams (2003, 2016); Kiley (2015); Holston, Laubach, 
and Williams (2017); Del Negro et al. (2017); and Johannsen and Mertens (2016, 2018). For robustness, we also 
consider four ​​r​ t​ ∗​​ estimates that we create, which range from a simple moving-average of the real rate to a multivar-
iate estimate.

3 The improvement we document using trends to predict excess bond returns dovetails with recent research 
(e.g., Cieslak and Povala 2015; Brooks and Moskowitz 2017; Garg and Mazzoleni 2017; Jørgensen 2017) showing 
predictive gains from including slow-moving averages of past inflation, real output growth, or consumption growth. 
These predictive variables should be closely related to ​​π​ t​ ∗​​ and ​​r​ t​ ∗​​.
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specification parsimoniously models the Treasury yield curve using four state 
variables: three “yield factors” which are simply linear combinations of nominal 
bond yields, and one common stochastic trend, ​​i​ t​ ∗​​, which captures movements in 
the underlying macroeconomic trends. The existence of a common trend in interest 
rates stands in stark contrast to the usual stationary DTSMs in which yield factors 
follow a stationary VAR(1). Furthermore, in our model, the trend is unspanned or 
hidden, so it cannot be backed out from the cross section of yields. This specification 
is consistent with our evidence showing that adding ​​i​ t​ ∗​​ improves predictions of bond 
returns. In addition, an unspanned ​​i​ t​ ∗​​ need not follow Treasury yields in lockstep and 
can play a similar role as the trend component in an unobserved components model. 
For robustness, we employ two different estimation methodologies, which provide 
similar results. First, we estimate the model using an observed proxy for ​​i​ t​ ∗​​ in order 
to carry out a model-based analysis using the same real-time interest rate trend we 
employed in establishing the stylized facts about macro-finance trends. Second, we 
use Bayesian estimation of our model to infer ​​i​ t​ ∗​​ using only Treasury yields, impos-
ing a certain degree of smoothness on our trend estimate, similar to Del Negro et al. 
(2017).

We then show that simulated data from these empirical specifications are able 
to match the stylized facts that we established about the role of trends for the yield 
curve. The model-based estimates of the trend and cycle components of interest 
rates are consistent with the cointegration regression results from the actual data. 
Also, the model accounts for the additional predictive power for future bond returns 
provided by the trend underlying interest rates as was evident in our historical data 
sample. Specifically, predictive regressions using simulated data from our model 
demonstrate notable increases in ​​R​​ 2​​ when the interest rate trend is added as a pre-
dictor, just as in the actual data.

We also use our shifting-endpoint model to investigate two important applica-
tions of DTSMs: (i) decomposing long-term interest rates into an expectations 
component and a term premium and (ii) forecasting interest rates. For the former, 
our model provides markedly different decompositions of long-term rates than the 
usual stationary DTSM. A stationary DTSM implies a quite stable expectations 
component and attributes most of the secular decline in interest rates to the resid-
ual term premium, as discussed in critiques by Kim and Orphanides (2012) and 
Bauer, Rudebusch, and Wu (2014). Instead, our shifting-endpoint model decom-
position attributes the majority of that secular decline to a fall in long-term expec-
tations driven by ​​i​ t​ ∗​​. Consequently, our term premium estimates exhibit only a 
modestly decreasing trend and more pronounced cyclical swings, similar to other 
risk premia in asset prices (Fama and French 1989). As for out-of-sample inter-
est rate forecasting, previous researchers have struggled to find models that con-
sistently outperformed the random walk forecast, which simply predicts that a 
future yield will equal the current yield. But we find that forecasts implied by our 
shifting-endpoint DTSM are generally more accurate than this martingale bench-
mark and are also better than long-range projections from the Blue Chip survey 
of professional forecasters. By contrast, the standard stationary DTSM (corre-
sponding to the special case of our model with a constant ​​i​​ ∗​​) forecasts substan-
tially worse than the random walk. The improvements in forecast accuracy from 
allowing a slow-moving shifting endpoint are both economically and statistically 
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significant, and they are consistent with yields returning over time to their under-
lying macro trend.4

Our analysis is related to several different strands of the macro and finance liter-
atures. Some studies have described a link between the inflation trend and nominal 
yields (Kozicki and Tinsley 2001; van Dijk et al. 2014; Cieslak and Povala 2015), 
but this leaves unexplained the continuing decline in yields over the past 20 years. 
Time variation in ​​r​ t​ ∗​​ has so far received little attention in finance, despite growing 
evidence of a sizable decline in the equilibrium real interest rate.5 Our paper com-
prehensively documents the empirical importance of both relevant macro trends, ​​π​ t​ ∗​​ 
and ​​r​ t​ ∗​​, for the dynamics of the yield curve.

No-arbitrage models of the yield curve typically rule out time-varying trends by 
specifying that the dynamics of yields are stationary. However, such models are 
ill-suited to capture the extreme persistence of interest rates, and a variety of rem-
edies have been suggested.6 Our results suggest that allowing for shifting long-run 
trends is a better solution. The idea of a shifting-endpoint term structure model goes 
back to Kozicki and Tinsley (2001), who specified a restrictive two-factor DTSM 
that imposed the expectations hypothesis and identified ​​i​ t​ ∗​​ with a distant-horizon for-
ward rate (with a unit root under both the risk-neutral and the real-world measure). 
Some macro-finance models of the yield curve allow for changes in the inflation 
trend but still assume a constant equilibrium real rate (Hördahl, Tristani, and Vestin 
2006; Rudebusch and Wu 2008). The model of Campbell, Sunderam, and Viceira 
(2017), which is designed to capture the changing comovement of stock and bond 
returns, is an asset pricing model with a time-varying ​​π​ t​ ∗​​ and constant ​​r​​ ∗​​. A few 
no-arbitrage models allow for changes in ​​r​ t​ ∗​​, but they also make strong assumptions 
about this trend by tightly linking it to ​​π​ t​ ∗​​ (Dewachter and Lyrio 2006) or trend 
output growth (Dewachter and Iania 2011). Our model allows both stochastic mac-
roeconomic trends to affect term structure dynamics. We also depart from the exist-
ing literature by treating ​​i​ t​ ∗​​ as unspanned, which allows this trend to exhibit some 
variation independent of contemporaneous yields.

Three recent papers propose statistical models of interest rates with time-varying 
long-run means and are thus closely related to ours. Del Negro et al. (2017) esti-
mates a Bayesian common-trend vector autoregression (VAR) for interest rates and 
inflation that allows for time variation in ​​π​ t​ ∗​​ and ​​r​ t​ ∗​​. We use their estimates of ​​r​ t​ ∗​​, 
along with others, in our analysis establishing stylized facts. Johannsen and Mertens 
(2018) also proposes a time series model for yields and a Bayesian estimation 

4 In related work, van Dijk et al. (2014) documented forecast improvements relative to a random walk by includ-
ing shifting endpoints based on their proxy of ​​π​ t​ ∗​​. We demonstrate how to achieve even greater forecast gains in an 
arbitrage-free DTSM framework that accounts for time-varying ​​π​ t​ ∗​​ and ​​r​ t​ ∗​​.

5 The economic forces reducing the equilibrium real interest rate likely include lower productivity growth, 
changing demographics, a decline in the price of capital goods, and strong precautionary saving flows from emerg-
ing market economies, which have tended to increase global savings, reduce desired investment, and push down 
the steady-state real interest rate. Discussions include Summers (2014); Kiley (2015); Rachel and Smith (2015); 
Hamilton et  al. (2016); Laubach and Williams (2016); Johannsen and Mertens (2016, 2018); Christensen and 
Rudebusch (2019); Del  Negro et  al. (2017); Holston, Laubach, and Williams (2017); and Lunsford and West 
(2019). In macroeconomics, ​​r​ t​ ∗​​ is often labeled the neutral or natural rate of interest although, as noted below, there 
can be subtle differences among various definitions.

6 Proposed remedies include adding survey information (Kim and Wright 2005; Kim and Orphanides 2012), 
restricting risk prices (Joslin, Priebsch, and Singleton 2014; Bauer 2018), correcting for small-sample bias (Bauer, 
Rudebusch, and Wu 2012, 2014), and using near-integration or long memory processes (Jardet, Monfort, and 
Pegoraro 2013; Goliński and Zaffaroni 2016).
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framework that allows for stochastic volatility, and we also include their real-time ​​r​ t​ ∗​​ 
among our trend proxies. Finally, Crump, Eusepi, and Moench (2018) allows for 
shifting macroeconomic trends in a common-trend VAR for interest rates and infla-
tion with ​​i​ t​ ∗​​, ​​r​ t​ ∗​​, and ​​π​ t​ ∗​​ pinned down from surveys of professional forecasters. These 
three papers provide complementary time series analyses to our approach. However, 
our arbitrage-free specification, which jointly captures the time series and cross sec-
tion of Treasury yields, allows us to investigate the role of trends for the yield curve, 
the term premium, and expected bond returns.

The paper is structured as follows. Section I describes key concepts and our initial 
proxies for the macroeconomic trends. Section II presents stylized facts about the 
macroeconomic trends and Treasury yields. Section III introduces our no-arbitrage 
model, shows how it captures the stylized facts, and presents novel estimates of the 
term premium as well as out-of-sample forecast results. Section IV concludes. The 
Appendix contains further details, and the online Appendix contains supplemental 
material.

I.  Interest Rate Trends: Theory and Estimates

The role of trends for interest rates can be illustrated with the usual decompo-
sition of any ​n​-period yield, ​​y​ t​ (n)​​, into expectations of short-term rates and a term 
premium, ​T​P​ t​ (n)​​:

(1)	​ ​y​ t​ 
​(n)​​  = ​  1 _ n ​ ​ ∑ 

j=0
​ 

n−1

​​ ​E​t​​ ​i​t+j​​ + T​P​ t​ 
​(n)​​  = ​ i​ t​ ∗​ + ​ 1 _ n ​ ​ ∑ 

j=0
​ 

n−1

​​ ​E​t​​ ​i​ t+j​ c  ​ + T​P​ t​ 
​(n)​​​,

where ​​i​t​​​ is the nominal short rate, ​​y​ t​ (1)​​.7 The term premium compensates bond inves-
tors for the duration risk in longer-term bonds, though in practice, it also captures 
liquidity and financial market frictions. The expectations theory of interest rates 
assumes that the term premium is 0 (strong form) or constant (weak form), whereas 
modern finance theories of interest rates explicitly model the time variation in the 
term premium, as described in Section III. The second equality in equation (1) intro-
duces the trend or equilibrium short rate, ​​i​ t​ ∗​​, and the short rate cycle, ​​i​ t​ c​  = ​ i​t​​ − ​i​ t​ ∗​​. 
We define ​​i​ t​ ∗​​ as the Beveridge-Nelson trend in the short-term nominal interest rate,

(2)	​ ​i​ t​ ∗​  ≡ ​  lim​ 
j→∞

​ 
 
 ​  ​E​t​​ ​i​t+j​​​.

We employ this stochastic trend concept throughout this paper and assume no deter-
ministic time trends. All nominal yields are affected by changes in ​​i​ t​ ∗​​, and if this 
trend is time-varying, then yields are nonstationary with a common trend. In this 
case, Kozicki and Tinsley (2001) fittingly calls ​​i​ t​ ∗​​ a “shifting endpoint.” The Fisher 
equation suggests that two macroeconomic trends determine this endpoint:

	​ ​i​t​​  = ​ r​t​​ + ​E​t​​ ​π​t+1​​  ⇒ ​ i​ t​ ∗​  = ​ r​ t​ ∗​ + ​π​ t​ ∗​​,

7 This intuitive definition of the term premium, the expected excess log return on the long-term bond held to 
maturity over a strategy of rolling over short-term bonds, is common in macroeconomics. It differs from the defi-
nition used in DTSMs by a Jensen inequality term, but in homoskedastic models such as the one proposed in this 
paper, this variance correction term is a constant.
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where ​​r​t​​​ is the real short rate, ​​π​t​​​ is inflation, and the trends in ​​r​t​​​ and ​​π​t​​​ are defined 
analogously to ​​i​ t​ ∗​​. If inflation or the real interest rate contain long-run trend compo-
nents, then nominal interest rates will also be driven by these same macroeconomic 
trends.

The remainder of this section describes the empirical proxies of these trends that 
we employ to establish stylized facts about macro-finance trends in interest rates.8 
For the long-run inflation trend, the prevailing consensus in empirical macroeco-
nomics models inflation as an ​I (1)​ process; in order to produce accurate forecasts 
and correctly capture the evolution of inflation expectations (Stock and Watson 
2007; Faust and Wright 2013). From a macroeconomic perspective, the resulting 
time-varying ​​π​ t​ ∗​​ can be viewed as the perceived inflation target of the central bank. 
Empirical proxies for trend inflation have been constructed from surveys, statistical 
models, or a combination of the two; see, for example, Stock and Watson (2016) and 
the references therein. We employ a well-known, widely used survey-based measure 
of long-run inflation expectations, the Federal Reserve’s series on the perceived tar-
get rate (PTR) for inflation.9 Figure 1 shows that, from the beginning of our sample 
to the late 1990s, this estimate generally mirrored the rise and fall of the ten-year 
yield.10 Since then, however, it has remained close to 2 percent, which has been 
the explicit longer-run inflation goal of the Federal Reserve since 2012. Given our 
focus on forecasting, real-time availability is an important issue, and for most of our 
sample (since 1979) the PTR estimate was available in real time from the Survey of 
Professional Forecasters.

As a proxy for ​​r​ t​ ∗​​, we use a variety of estimates to avoid reliance on one specific 
model or estimation approach. All of these estimates are consistent with our defi-
nition of ​​r​ t​ ∗​​ as the stochastic trend in the real short rate, analogous to equation (2). 
The first two ​​r​ t​ ∗​​ estimates are the long-run real rate trends from time series models 
identified with Bayesian methods. Del  Negro et  al. (2017)—henceforth, DGGT—
estimates a linear state space model with common trends, and Johannsen and Mertens 
(2016, 2018)—henceforth, JM—employs a nonlinear state space model with a 
shadow rate. Three additional estimates are based on simple New Keynesian macro 
models and use the Kalman filter to infer the neutral real interest rate, that is, the level 
of the real rate consistent with real output at potential and inflation at target: Laubach 
and Williams (2003, 2016)—henceforth, LW—implements this concept empirically 
using the Rudebusch and Svensson (1999) model; Holston, Laubach, and Williams 
(2017)—henceforth, HLW—uses a slight simplification of the LW model; and Kiley 
(2015) augments the LW model to account for changes in financial conditions. The 
implementation of these macro models assumes that the neutral rate follows a mar-
tingale; thus, their ​​r​ t​ ∗​​ estimates are consistent with the long-run concept we employ. 
We also construct three model-based estimates of our own. The first is based on a 
simple univariate unobserved components model, and the second uses the same model 
augmented with moving averages of real GDP and labor force growth that appear 
to be correlated with the real rate trend (Lunsford and West 2019). The third esti-

8 The Appendix provides an overview of all trend estimates.
9 PTR is used in the Fed’s FRB/US model: see Federal Reserve Board of Governors (2019b).
10 Other estimates of the inflation trend, such as the long-range forecasts in the Blue Chip survey, the 

moving-average estimate of Cieslak and Povala (2015), or various model-based estimates (Clark and Doh 2014; 
Stock and Watson 2016) exhibit a similar pattern.
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mate uses the observed nominal short rate and inflation in a state-space model with a 
latent real rate and ​​r​ t​ ∗​​. We estimate these models using Bayesian methods, and like 
DGGT, we employ a prior with a low innovation variance for ​​r​ t​ ∗​​. Finally, as a simple, 
model-free estimate of ​​r​ t​ ∗​​, we include an exponentially-weighted moving average of 
past real rates.11

Figure 2 summarizes these ​​r​ t​ ∗​​ estimates. Panel A shows the average and the 
range of the smoothed (two-sided) estimates, which use the full data sample for 
inference about the parameters and state variables. These show a relatively sta-
ble ​​r​ t​ ∗​​ until the late 1990s, but then exhibit a pronounced decline. To better capture 
what bond market investors could have known about macro trends contemporane-
ously, our analysis will focus on filtered (one-sided) and real-time estimates of ​​r​ t​ ∗​​, 
which are shown in panel B of Figure 2. Filtered estimates, from the LW, HLW, and 

11 Our smoothing parameter of 0.98 follows other research estimating macro trends (Malmendier and Nagel 
2011; Orphanides and Williams 2005).
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Figure 2.  Measures of the Equilibrium Real Interest Rate

Notes: Smoothed (two-sided), filtered (one-sided), and real-time estimates of the equilibrium real interest rate, ​​r​ t​ ∗​​. 
Panel A: range and average of seven smoothed estimates, including the four estimates by Del Negro et al. (2017), 
Johannsen and Mertens (2018), Laubach and Williams (2016), and Kiley (2015), as well as our own three 
model-based estimates. Panel B: range and average of filtered and real-time estimates. Filtered estimates are the 
estimates of LW; Holston, Laubach, and Williams (2017); and Kiley. Real-time estimates are those of DGGT, JM, 
our own three real-time model-based estimates, and the model-free moving-average estimate, which is also shown 
separately. For details, see Section I and the Appendix. The data are quarterly from 1971:IV to 2018:I.



1324 THE AMERICAN ECONOMIC REVIEW MAY 2020

Kiley models, infer latent state variables at time ​t​ using data available up to time  
​t​. However, they also use model parameter estimates from the full sample, which 
would not have been available to investors in real time. Therefore, to avoid the pit-
fall of look-ahead bias in our analysis of predictive power, we consider (pseudo) 
real-time estimates that only use data through period ​t​ to construct ​​r​ t​ ∗​​. Such real-time 
estimates are available for the JM and DGGT models, our own three models, and the 
moving-average of past real rates.12 As shown in Figure 2, the average of these six 
real-time estimates increased from about 1 to 2 percent early in the sample, moved 
sideways for about 15 years, and then around 2000 started a substantial, steady 
decline until the end of the sample. This pattern closely follows the movements of 
the moving-average estimate of ​​r​ t​ ∗​​, which has the added benefit of not relying on 
a model or estimation technique unavailable to investors historically. Finally, the 
average of all nine filtered and real-time ​​r​ t​ ∗​​ estimates, which is displayed in Figure 1, 
also shows a similar pattern.

Substantial estimation and model uncertainty underlie estimates of any long-run 
trends, as suggested by the range of estimates in Figure 2. To reduce the uncertainty 
inherent in individual estimates, we take averages of ​​r​​ ∗​​ estimates across models. 
While this approach is not a panacea for estimation uncertainty and measurement 
error, model-averaging is well known to improve forecast accuracy (Timmermann 
2006).13 Our baseline estimate of ​​i​ t​ ∗​​ for the analysis in Section II will be the sum of 
the PTR estimate of ​​π​ t​ ∗​​ and the average of all six real-time estimates of ​​r​ t​ ∗​​.14

II.  Macro Trends and Yields: Stylized Facts

A. The Common Trend in Nominal Yields

We first investigate whether macroeconomic trends account for the high per-
sistence of interest rates. We then assess whether accounting for just the inflation 
trend is sufficient or if a real rate trend also materially contributes to movements in 
nominal bond yields. Our proxies for these macro trends are the PTR survey-based 
estimate of ​​π​ t​ ∗​​ and the three alternative estimates of ​​r​ t​ ∗​​: the average of three filtered 
estimates, the average of the six real-time estimates, and a simple (exponentially 
weighted) moving average of past real rates. We proxy for the equilibrium nominal 
short rate ​​i​ t​ ∗​​ with the sum of ​​π​ t​ ∗​​ and the real-time average estimate of ​​r​ t​ ∗​​ (but obtain 
similar results with the filtered or moving-average measures).

We find that variation in the macro trends accounts for the persistence of interest 
rates, and the trend and cycle components of interest rates can be identified using our 
proxy ​​i​ t​ ∗​​. This is illustrated in Figure 3, which shows the (demeaned) ten-year yield 

12 These estimated trends all rely on revised inflation data, and the multivariate model also uses revised output 
data. Although the use of real-time data vintages can be important for near-term forecasting, it is arguably less 
relevant for estimation of long-run trends. Also, Laubach and Williams (2016) argues that, for the past decade, their 
truly real-time ​​r​ t​ ∗​​ estimates have turned out to be similar to filtered estimates.

13 Because we find a close link between the yield curve and our noisy estimates of the macro trends, our results 
are likely somewhat conservative regarding the tightness of the connection between the yield curve and the true 
underlying trends (as discussed in the online Appendix).

14 An alternative proxy for ​​i​ t​ ∗​​ could be obtained from surveys, such as the long-range forecast for the three-month 
T-bill rate from the Blue Chip Financial Forecasts. This series, which is only available semiannually starting in 
1986, fluctuates around our baseline estimate of ​​i​ t​ ∗​​. We consider survey forecasts in Section IIIF.
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and two detrended versions of that yield.15 The first detrended yield is the simple 
difference between the yield and ​​i​ t​ ∗​​, which should be stationary if the yield is indeed 
driven by this trend and the loading on ​​i​ t​ ∗​​ is unity. In comparison to the ten-year 
yield, this series exhibits much less of a trend, for example, declining by less than 
one-half as much from the early 1980s to the end of our sample. Still, a notable trend 
remains in this simple difference, which indicates that the yield trend component 
moves more than one-for-one with ​​i​ t​ ∗​​. By definition, the expectations component 
of yields moves one-for-one with ​​i​ t​ ∗​​, so the ten-year term premium must contain a 
trend component positively related to ​​i​ t​ ∗​​. To account for this relationship, the second 
detrended series, discussed in detail below, is the residual from a (Dynamic ordinary 
least squares) cointegration regression of the yield on ​​i​ t​ ∗​​. This cointegration residual 
shows no discernible trend, indicating that changes in ​​i​ t​ ∗​​, properly scaled, can fully 
capture the trend in the ten-year Treasury yield. The fitted value of the cointegration 
regression is the trend component of the ten-year yield, for which we also obtain a 
model-based estimate in Section IIIC, and the residual, shown in Figure 3, corre-
sponds to the interest rate cycle.

15 We use end-of-quarter zero-coupon Treasury yields from Gürkaynak, Sack, and Wright (2007) with matur-
ities from 1 to 15 years and three-month and six-month Treasury bill rates from the Federal Reserve’s H.15 release 
(Federal Reserve Board of Governors 2019a), over the period from 1971:IV to 2018:II.
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Figure 3.  Detrending the Ten-Year Yield

Notes: Ten-year Treasury yield and two detrended yield series using as the proxy for the equilibrium interest rate ​​i​ t​ ∗​​ 
the sum of the PTR estimate of ​​π​ t​ ∗​​ and the real-time estimate of ​​r​ t​ ∗​​ shown in Figure 2. The first detrended yield series 
is the difference between the yield and ​​i​ t​ ∗​​. The second detrended series is the residual from the (Dynamic OLS) 
cointegration regression of the yield on ​​i​ t​ ∗​​, estimates of which are reported in the last column of Table 1. Shaded 
areas are NBER recessions. The data are quarterly from 1971:IV to 2018:I.
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It has long been known that nominal interest rates are highly persistent.16 
Summary statistics and unit root tests reported in the online Appendix confirm that 
Treasury yields are best modeled as having a stochastic trend in our sample. We 
examine whether this persistence is driven by a common macro trend. Figure 3 sug-
gests a likely cointegration relationship with a loading on the trend larger than unity. 
To formally investigate this relationship, including the individual contributions 
of ​​π​ t​ ∗​​ and ​​r​ t​ ∗​​, we use cointegration regressions of the form ​​y​ t​ (40)​  = ​ β​0​​ + ​β​ 1​ ′ ​ ​X​ t​ ∗​ + ​u​t​​​, 
where ​​y​ t​ (40)​​ is the ten-year yield, the vector ​​X​ t​ ∗​​ contains one or two macro trend prox-
ies, and ​​u​t​​​ is a stationary residual under cointegration. We estimate the coefficients ​​β​0​​​ 
and ​​β​1​​​ using the Dynamic OLS estimator of Stock and Watson (1993) by including 
four leads and lags of ​Δ ​y​ t​ (40)​​ and ​Δ ​X​ t​ ∗​​.17

Table 1 shows the results of our cointegration analysis, including coefficient esti-
mates, Newey-West standard errors (using six lags), and the regression ​​R​​ 2​​. The 
first regression specification includes only ​​π​ t​ ∗​​, and the results echo those of Cieslak 
and Povala (2015), which used simple OLS regressions but a similar inflation trend 
proxy. The inflation trend coefficient is somewhat higher than 1 and strongly signifi-
cant, and the ​​R​​ 2​​ is very high. However, trend inflation does not fully account for the 
trend behavior of yields, as evident from the persistence of the cointegration resid-
uals ​​​u ˆ ​​t​​  = ​ y​ t​ (40)​ − ​​β ˆ ​​0​​ + ​​β ˆ ​​1​​ ​π​ t​ ∗​​. While ​​​u ˆ ​​t​​​ is much less persistent than the ten-year 
yield, it is still quite persistent. As shown in the second column, for this series, the 
Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) unit root tests do not 
reject the null, and the low-frequency stationary test of Müller and Watson (2013) 
rejects stationarity at the 5  percent level.18 The inadequacy of detrending with 
only ​​π​ t​ ∗​​ is also supported by a Johansen (1991) trace test, which does not reject the 
null of absence of cointegration among the yield and the inflation trend.19 Finally, 
an error-correction model, where ​Δ ​y​ t​ (40)​​ is regressed on ​​​u ˆ ​​t−1​​​ and four lags each of 
the first-differenced yield and the inflation trend, indicates only modest equilibrating 
forces pushing yields toward the inflation trend.

The missing driver of the level of the yield curve is the real rate trend. The 
remaining columns of Table  1 show that there is strong evidence for cointegra-
tion once ​​r​ t​ ∗​​ is added. For all three ​​r​​ ∗​​ proxies, the estimated coefficients are at or 
above 1 and strongly significant. Adding the real rate trend increases the ​​R​​ 2​​ by 8 to 
11 percentage points, and the cointegration residual now appears to be stationary. 
For the real-time and moving-average estimates of ​​r​ t​ ∗​​, the Johansen test indicates a 
cointegration rank of 1, and the error-correction model shows that yield dynamics 
quickly eliminate deviations from trend. The coefficients on the two macro trends 
are roughly equal, and the last column of Table 1 shows that ​​i​ t​ ∗​​ can fully capture 
the trend component in the ten-year yield, since the evidence for cointegration is 
as strong as when both macro trends are included individually. The cointegration 
coefficient is 1.67, suggesting a positive loading of the term premium on ​​i​ t​ ∗​​, a result 

16 See, for example, Nelson and Plosser (1982), Rose (1988), and King et al. (1991).
17 In the online Appendix, we report results for the level of the yield curve, which are similar to those for the 

ten-year yield. Also, standard OLS as well as the reduced-rank maximum likelihood VAR estimation of Johansen 
(1991) lead to the same conclusions as Dynamic OLS (not reported).

18 For the unit root tests of cointegration residuals, we omit intercepts in the ADF and PP regressions and use 
the critical values provided by  Phillips and Ouliaris (1990), which vary with the number of regressors (as detailed 
in the online Appendix).

19 The test is based on a VAR representation with four lags as selected using information criteria.
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replicated by our model in Section IIIC. The error-correction coefficient is estimated 
as −0.45 and is strongly significant. Accordingly, when the ten-year yield is high 
relative to ​​i​ t​ ∗​​, it tends to revert quickly toward this trend, with almost one-half of the 
equilibrium error on average reversed within one quarter. Therefore, knowledge of 
the macro trend appears quite useful when predicting future yields. In sum, these 
results indicate that the low-frequency behavior of Treasury yields is explained by 
movements in a common underlying macroeconomic trend, ​​i​ t​ ∗​​, in which both ​​π​ t​ ∗​​ 
and ​​r​ t​ ∗​​ play important roles.

B. Predicting Excess Bond Returns with Macro Trends

We now consider whether macroeconomic trends can help predict future excess 
bond returns. The one-quarter return on a bond with maturity ​n​ in excess of the 
risk-free rate is

	​ r​x​ t+1​ 
​(n)​ ​  ≡ ​ p​ t+1​ 

​(n−1)​​ − ​p​ t​ 
​(n)​​ − ​y​ t​ 

​(1)​​  =  − ​(n − 1)​ ​y​ t+1​ 
​(n−1)​​ + n​y​ t​ 

​(n)​​ − ​y​ t​ 
​(1)​​​,

Table 1—Cointegration Regressions and Tests

Yield (1) (2) (3) (4) (5)

Constant 6.48 0.65 −0.22 −1.82 −0.64 −2.17
(0.55) (0.54) (0.33) (0.43) (0.39) (0.30)

​​π​ t​ ∗​​ 1.65 1.26 1.53 1.47
(0.11) (0.08) (0.07) (0.07)

​​r​ t​ ∗​​ 0.99 1.76 1.18
(0.15) (0.16) (0.13)

​​i​ t​ ∗​​ 1.67
(0.06)

​​R​​ 2​​ 0.85 0.93 0.96 0.96 0.95
Memo: ​​r​​ ∗​​ Filtered Real-time Moving average Real-time

SD 2.94 1.31 1.09 0.70 0.87 0.70
​​ρ ˆ ​​ 0.97 0.88 0.85 0.65 0.75 0.64
Half-life 26.4 5.6 4.3 1.6 2.5 1.5
ADF −1.13 −2.60 −3.94 −5.32 −4.33 −5.37
PP −3.11 −18.32 −26.73 −68.47 −46.30 −70.30
LFST 0.00 0.03 0.16 0.72 0.23 0.71

Johansen ​r = 0​ 13.34 33.08 46.83 45.49 30.69
Johansen ​r = 1​ 1.29 5.92 11.57 9.14 0.73

ECM ​​α ˆ ​​ −0.11 −0.18 −0.44 −0.49 −0.45
(0.03) (0.05) (0.08) (0.09) (0.08)

Notes: Dynamic OLS regressions of the ten-year yield, ​​y​ t​ 
​(40)​​​, on macroeconomic trends, including four leads 

and lags of ​Δ ​y​ t​ (40)​​ and differenced trend variables. Newey-West standard errors using six lags are in paren-
theses. The ​​r​​ ∗​​ estimates are described in Section I, and the long-run nominal short rate ​​i​ t​ ∗​​ is the sum of ​​π​ t​ ∗​​ and 
the real-time estimate of ​​r​ t​ ∗​​. For the cointegration residuals (and, in the first column, for the ten-year yield 
itself), the second panel reports standard deviations (SD), first-order autocorrelation coefficients (​​ρ ˆ ​​), half-lives 
(​ln(0.5)/ln(​ρ ˆ ​)​), Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) unit root test statistics, and p-values 
for Müller-Watson low-frequency stationary test (LFST). The table also reports the Johansen trace statistic which 
tests whether the cointegration rank (​r​) among the yield and the macro trends is 0/1 against the alternative that 
it exceeds 0/1, using four lags in the VAR. Estimates of the coefficient ​α​ (with White standard errors) on the 
cointegration residual in the error-correction model (ECM) for ​Δ ​y​ t​ (40)​​ that also includes an intercept, four lags of ​
Δ ​y​ t​ (40)​​, and four lags of differenced macro trends. The data are quarterly from 1971:IV to 2018:I.
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where ​​p​ t​ (n)​​ denotes the log-price of a zero-coupon bond. Since Fama and Bliss (1987) 
and Campbell and Shiller (1991), it is well known that the yield curve contains use-
ful information for predicting excess bond returns. The key question is whether the 
current yield curve contains all of the information relevant for predicting future 
returns, that is, whether the spanning hypothesis holds. Cieslak and Povala (2015) 
showed that adding a proxy for the inflation trend significantly improved predic-
tive power, an apparent violation of the spanning hypothesis. Bauer and Hamilton 
(2018) found that even after correcting for the small-sample econometric distortions 
associated with highly persistent regressors, the trend inflation proxy remains a rela-
tively robust predictor and thus is unspanned by the yield curve.20

To investigate this result more broadly, we examine the gains from includ-
ing ​​π​ t​ ∗​​, ​​r​ t​ ∗​​, and ​​i​ t​ ∗​​ in predictive regressions for excess bond returns. We predict the 
one-quarter excess return averaged across maturities from 2 to 15 years.21 Table 2 
reports results for six different predictive regressions. The first column is the usual 
baseline specification that includes only a constant and the first three principal com-
ponents (PCs) of yields.22 The specification in the second column adds ​​π​ t​ ∗​​, and 
columns three through five include ​​π​ t​ ∗​​ as well as one of our three proxies of ​​r​ t​ ∗​​ in 
order to capture the effects of both trends. The final column adds only ​​i​ t​ ∗​​ instead of 
two separate macro trends. We report White standard errors as well as small-sample 
p-values for the macro trends using the parametric bootstrap of Bauer and Hamilton 
(2018) to obtain accurate small-sample tests even though the regressors are per-
sistent and correlated with lagged forecast errors.23 Panel A uses the full sample of 
data, while panel B considers a subsample from 1985 to 2018 for robustness. There 
is some evidence of a shift in the conduct of US monetary policy in the mid-1980s, 
which would likely lead to a change in interest rate dynamics, so such a subsample 
is often considered more appropriate for yield curve analysis (e.g., Rudebusch and 
Wu 2007; Joslin, Priebsch, and Singleton 2014).

In the full sample, the inclusion of the inflation trend increases the predictive 
power substantially compared with using only yield curve information. Both the 
inflation trend and the level of yields (PC1) are highly significant (in addition 
to the slope, PC2), as in Cieslak and Povala (2015). However, adding ​​r​ t​ ∗​​ to the 
regression leads to further impressive gains in predictive power. Notably, for the 
moving-average estimate of ​​r​ t​ ∗​​, the ​​R​​ 2​​ jumps, the coefficients and significance for ​​π​ t​ ∗​​ 
and PC1 rise, and the coefficient on ​​r​ t​ ∗​​ is large and significant.24 Not surprisingly 
given Figure 1, the relative predictive power of the two macro trends is different in 

20 Other empirical results contradict spanning in different ways. For example, Cochrane and Piazzesi (2005) 
finds that lagged forward rates add predictive power to current forward rates.

21 We use one-quarter holding periods to avoid the econometric problems resulting from overlapping observa-
tions. The one-quarter returns are calculated with the usual approximation ​​y​ t+1​ 

(n−1)​  ≈  ​y​ t​ (n)​​. We have obtained quali-
tatively similar results with annual returns (not reported). In addition, the online Appendix provides estimates for 
individual bond maturities.

22 We scale the PCs such that they correspond to common measures of level, slope, and curvature, as in Joslin, 
Priebsch, and Singleton (2014). For example, the loadings of yields on PC1 sum to 1.

23 We simulate 5,000 bootstrap samples for yields and predictors under the spanning hypothesis, using separate 
(bias-corrected) VAR(1) models for yield factors and predictors. The small-sample p-values are the fractions of 
simulated samples in which the ​t​-statistics of the macro trends are at least as large (in absolute value) as in the 
actual data.

24 Changes in ​​R​​ 2​​ can be difficult to interpret in the presence of highly persistent predictors, and the online 
Appendix confirms these results using our bootstrap.
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the more recent period as the variation in ​​r​ t​ ∗​​ became more pronounced. In the sub-
sample starting in 1985, the inflation trend by itself is not statistically significant. 
Only with the addition of the equilibrium real rate do both trends matter for bond 
risk premia: the coefficients on ​​π​ t​ ∗​​ and PC1 more than double, the ​​R​​ 2​​ increases sub-
stantially, and the coefficients on ​​π​ t​ ∗​​ and ​​r​ t​ ∗​​ are statistically significant. These results 
imply that the trend in the real interest rate is as important as, and recently is more 
important than, the trend in inflation.

The inflation and real-rate trends have roughly equal coefficients (similar to the 
cointegration regression). This suggests they play similar roles for yield dynamics 

Table 2—Predictive Regressions: Yields and Macro Trends

(1) (2) (3) (4) (5) (6)

Panel A. Full sample, 1971:IV–2018:I
PC1 0.08 0.98 1.39 2.38 2.04 2.47

(0.17) (0.26) (0.39) (0.67) (0.56) (0.61)
PC2 0.43 0.47 0.43 0.67 0.68 0.70

(0.17) (0.17) (0.17) (0.15) (0.15) (0.15)
PC3 −2.37 −1.79 −1.92 −0.92 −0.90 −0.86

(1.34) (1.27) (1.22) (1.39) (1.43) (1.35)
​​π​ t​ ∗​​ −1.95 −2.21 −4.40 −3.89

(0.44) (0.47) (1.10) (0.92)
[0.00] [0.00] [0.00] [0.00]

​​r​ t​ ∗​​ −1.19 −3.89 −2.71
(0.59) (1.47) (1.04)
[0.14] [0.07] [0.04]

​​i​ t​ ∗​​ −4.50
(1.05)
[0.00]

​​R​​ 2​​ 0.09 0.16 0.18 0.21 0.20 0.21
Memo: ​​r​​ ∗​​ filtered real-time moving average real-time

Panel B. Subsample, 1985:I–2018:I
PC1 0.25 0.59 1.67 2.65 2.38 1.93

(0.16) (0.22) (0.47) (0.57) (0.51) (0.47)
PC2 0.41 0.50 0.49 0.53 0.65 0.58

(0.15) (0.16) (0.16) (0.15) (0.15) (0.15)
PC3 −1.09 −0.97 0.14 1.74 2.11 0.56

(1.14) (1.12) (1.30) (1.48) (1.55) (1.19)
​​π​ t​ ∗​​ −1.05 −1.95 −3.44 −3.34

(0.73) (0.75) (0.87) (0.83)
[0.38] [0.10] [0.01] [0.01]

​​r​ t​ ∗​​ −2.03 −5.80 −4.11
(0.82) (1.54) (1.08)
[0.07] [0.01] [0.01]

​​i​ t​ ∗​​ −3.08
(0.91)
[0.02]

​​R​​ 2​​ 0.08 0.10 0.14 0.19 0.18 0.16
Memo: ​​r​​ ∗​​ filtered real-time moving average real-time

Notes: Predictive regressions for quarterly excess bond returns, averaged across 2- to 15-year maturities. The pre-
dictors are the first three principal components of yields (PC1, PC2, PC3) and estimates of the inflation trend ​​π​ t​ ∗​​, 
the real-rate trend ​​r​ t​ ∗​​, and the long-run nominal short rate ​​i​ t​ ∗​​. The long-run nominal short rate ​​i​ t​ ∗​​ is the sum of ​​π​ t​ ∗​​ 
and the real-time estimate of ​​r​ t​ ∗​​. The macro trend estimates are described in Section I. Numbers in parentheses are 
White standard errors and in squared brackets are small-sample ​p​-values obtained with the bootstrap method of 
Bauer and Hamilton (2018). The data are quarterly from 1971:IV to 2018:I.
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and that their sum, ​​i​ t​ ∗​​, can capture their relevant information. Indeed, as shown in 
the final column of Table 2, including just ​​i​ t​ ∗​​ as a predictor provides the same strong 
predictive gains. The coefficient on ​​i​ t​ ∗​​ is of course negative: if the trend component 
increases, then interest rates also rise in response, producing losses for bond hold-
ers.25 The coefficient is also larger in magnitude than the coefficient on the yield 
curve level (PC1), consistent with the evidence in Sections IIA and III that the trend 
component of yields moves more than one-for-one with changes in ​​i​ t​ ∗​​.

An earlier literature showed that a high yield curve slope predicts positive excess 
bond returns. Cochrane and Piazzesi (2005) also found additional predictive power 
in other aspects of the shape of the yield curve, captured in mid-curve forward rates 
or higher-order PCs. Our findings, by contrast, document the importance of the level 
of the yield curve as a powerful predictor. While in yields-only regressions, such as 
specification (1) in Table 2, the level appears irrelevant, it becomes a strong predic-
tor once ​​i​ t​ ∗​​ is accounted for. This result implies that the level of interest rates matters 
for expected future bond returns, but that it needs to be viewed relative to the under-
lying trend in yields. Furthermore, accounting for ​​i​ t​ ∗​​ makes the slope of the yield 
curve an even more powerful predictor.

In Table 3, we further investigate the importance of viewing interest rates relative 
to their stochastic trend by using stochastically detrended yields as predictors. The 
use of such predictors with low persistence has the added benefit that conventional, 
large-sample inference is more reliable (Bauer and Hamilton 2018). We use the 
first 3 PCs of the 17 detrended yields as predictors, where each detrended yield is 
obtained as the cointegration residual from a regression of the yield on macro trends. 
As before, we consider three types of detrending: using only ​​π​ t​ ∗​​, using both ​​π​ t​ ∗​​ and 
(real-time) ​​r​ t​ ∗​​, as well as using ​​i​ t​ ∗​​. In the full sample, all three detrending methods 
lead to substantial predictive gains compared to the baseline regression that has just 
the first 3 PCs of the 17 original yields. Notably, the detrended level of the yield 

25 Numerically, an increase in ​​i​ t​ ∗​​ by 0.1 percentage point predicts a decrease in the next quarter’s excess bond 
return by 0.45 percentage point. The online Appendix shows that this coefficient rises with bond maturity.

Table 3—Predictive Regressions: Detrended Yields

Full sample, 1971–2018 Subsample, 1985–2018

(1) (2) (3) (4) (1) (2) (3) (4)

PC1 0.08 0.98 1.25 1.36 0.33 0.41 1.14 0.81
(0.17) (0.25) (0.51) (0.50) (0.16) (0.22) (0.39) (0.38)

PC2 0.43 0.48 0.76 0.78 0.34 0.44 0.62 0.62
(0.17) (0.17) (0.16) (0.16) (0.14) (0.14) (0.14) (0.14)

PC3 −2.37 −1.77 −0.79 −0.73 −1.04 −0.96 1.53 0.45
(1.34) (1.26) (1.38) (1.33) (1.01) (1.01) (1.32) (1.05)

​​R​​ 2​​ 0.09 0.15 0.18 0.20 0.08 0.08 0.17 0.14

Notes: Predictive regressions for quarterly excess bond returns, averaged across 2- to 15-year maturities. In specifi-
cation (1) the predictors are the first three principal components of observed yields (PC1, PC2, PC3). In specifica-
tions (2), (3), and (4) the predictors are the first three principal components of detrended yields, that is, of residuals 
in regressions for yields on ​​π​ t​ ∗​​, ​​π​ t​ ∗​​ and ​​r​ t​ ∗​​, or ​​i​ t​ ∗​​, respectively. The long-run nominal short rate ​​i​ t​ ∗​​ is the sum of ​​π​ t​ ∗​​ and 
the real-time estimate of ​​r​ t​ ∗​​. The macro trend estimates are described in Section I. Numbers in parentheses are White 
standard errors with six lags. The data are quarterly from 1971:IV to 2018:I.
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curve (PC1) becomes strongly significant. Detrending with ​​i​ t​ ∗​​ works particularly 
well, giving the largest gain of 11 percentage points. In the post-1985 sample, the R2 
does not increase when detrending with only ​​π​ t​ ∗​​, but it increases by 9 and 6 percent-
age points, respectively, when detrending with either both ​​π​ t​ ∗​​ and ​​r​ t​ ∗​​ or with only ​​i​ t​ ∗​​. 
These estimates provide additional support for the importance of macro trends in 
predicting bond returns.

In sum, the key to predicting bond returns and estimating bond risk premia is 
to account for the long-run trend in interest rates. Both underlying macro trends 
have strong incremental predictive power for bond returns relative to the observed 
yield curve. That is, the long-run trend cannot be inferred from the cross section of 
yields alone, so our results contradict the spanning hypothesis. Finally, for detrend-
ing interest rates, it is crucial to use ​​i​ t​ ∗​​ instead of ​​π​ t​ ∗​​.

III.  A No-Arbitrage Model with a Stochastic Trend

To account for the stylized facts establishing an important low-frequency 
macro-finance interplay, we introduce and estimate a new DTSM. While existing 
DTSMs generally assume stationarity, our new formulation incorporates a shifting 
endpoint for interest rates, ​​i​ t​ ∗​​, as a common stochastic trend for yields. This novel 
specification allows us to explain the stylized facts, provide new estimates of the 
term premium, and more accurately forecast interest rates.

A. Model Specification

The state variables of our model of yield dynamics include ​N​ linear combinations 
of yields in the vector ​​P​t​​​, and we use ​N  =  3​ such yield factors.26 The key feature of 
our model is the presence of a single stochastic trend ​​τ​t​​​ common to the three factors. 
The common trends representation of the dynamic system is

(3)	​ ​P​t​​  = ​ P 
–
 ​ + γ​τ​t​​ + ​​P ̃ ​​t​​,     ​τ​t​​  = ​ τ​t−1​​ + ​η​t​​,   ​​ P ̃ ​​t​​  =  Φ​​P ̃ ​​t−1​​ + ​​u ̃ ​​t​​​,

where ​γ​ is an ​N​-vector with the loadings on the common trend, ​​η​t​​​ is i.i.d. nor-
mal with variance ​​σ​ η​ 2​​, ​​​P ̃ ​​t​​​ are the ​N​ cycle components that have i.i.d. normal inno-
vations ​​​u ̃ ​​t​​​ with covariance matrix ​​Ω ̃ ​​, and ​Φ​ is a mean-reversion matrix that has 
eigenvalues with modulus less than 1, so ​​​P ̃ ​​t​​​ is stationary. Accordingly, the state 
variables ​​Z​t​​  =  (τ, ​P​ t​ ′ ​ )′​ are trivially cointegrated.27 We assume that innovations to 
trend and cycle are orthogonal, ​E(​η​t​​ ​​u ̃ ​​t​​)  =  0​, as is commonly done with unobserved 
components models (Watson 1986; Del Negro et al. 2017). Our assumptions imply 
that the long-run trend components of ​​P​t​​​ are

(4)	​ ​P​ t​ ∗​  ≡ ​  lim​ 
j→∞

​ 
 
 ​  ​E​t​​ ​P​t+j​​  = ​ P 

–
 ​ + γ ​τ​t​​​.

26 Let the vector ​​Y​t​​​ contain ​J​ model-implied yields. Then ​​𝐏​t​​  =  ​WY​t​​​, where ​W​ is an ​N × J​ coefficient matrix.
27 The Appendix gives the VAR representation of the dynamic system. Innovations to ​​P​t​​​ are ​​P​t​​ − ​E​t−1​​ ​P​t​​ 

≡  ​u​t​​  =  γ ​η​t​​ + ​​u ̃ ​​t​​​ with covariance matrix ​Ω  =  γ γ′ ​σ​ η​ 2​ + ​Ω ̃ ​​.
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The short-term interest rate is taken to be an affine function of ​​P​t​​​,

(5)	​ ​i​t​​  = ​ δ​0​​ + ​δ​ 1​ ′ ​ ​P​t​​​.

Finally, we assume absence of arbitrage opportunities so that there exists a 
“risk-neutral” probability measure, denoted by ​​, which prices all financial assets 
(Harrison and Kreps 1979). The risk-neutral dynamics are specified as

(6)	​ ​P​t​​  = ​ μ​​ ​ + ​Φ​​ ​ ​P​t−1​​ + ​u​ t​ ​​,

where the innovations ​​u​ t​ ​​ are i.i.d. normal (under ​​) with covariance matrix ​Ω​. We 
assume that ​​P​t​​​ is stationary under ​​ by imposing that ​​Φ​​ ​​ has eigenvalues less than 
1 in absolute value, thus forward rates, yields, and bond convexity remain finite in 
the limit as maturity increases. Equations (5) and (6) imply that yields are affine 
functions of the yield factors, ​​Y​t​​  =  A + ​BP​t​​​. The loadings in ​A​ and ​B​ are deter-
mined by the risk-neutral parameters.28

Two types of normalizations are required for the state variables and parameters 
to be identified. The first set of normalizations, required in any affine term struc-
ture model, uniquely pins down the yield factors ​​P​t​​​. In their absence, an affine 
transformation of ​​P​t​​​ would leave implied interest rates ​​Y​t​​​ unchanged (Dai and 
Singleton 2000). We use the normalization of Joslin, Singleton, and Zhu (2011), 
which imposes restrictions only on the ​​-dynamics and is ideally suited for the use 
of linear combinations of yields as yield factors. In this normalization, only four 
parameters determine the ​​-dynamics: a scalar ​​k​​ ​​ and an ​N​-vector ​​λ​​ ​​ containing 
the eigenvalues of ​​Φ​​ ​​ which we assume to be real, distinct, and less than 1. These 
four parameters and ​Ω​ fully determine the yield loadings ​A​ and ​B​. Details are in the 
online Appendix.

The second normalization is needed to identify the unobserved trend ​​τ​t​​​. Without 
it, an affine transformation of ​​τ​t​​​ would leave the yield factors ​​P​t​​​ unchanged. For 
identification, we require one linear constraint on each of the vectors ​​P 

–
 ​​ (to fix the 

level) and ​γ​ (to fix the scale).29 We identify ​​τ​t​​​ as the long-run mean of the short 
rate, ​​τ​t​​  = ​ i​ t​ ∗​  = ​ δ​0​​ + ​δ​ 1​ ′ ​ ​P​ t​ ∗​​, using the normalizations ​​δ​0​​ + ​δ​ 1​ ′ ​ ​P 

–
 ​  =  0​ and ​​δ​ 1​ ′ ​ γ  =  1​. 

In total, the parameters of the model are ​​k​​ ​, ​λ​​ ​, γ, ​P 
–
 ​, Φ, Ω, ​σ​ η​ 2 ​​, and ​​σ​ e​ 2​​, where ​γ​ 

and ​​P 
–
 ​​ each have two degrees of freedom.

The key innovation of this model relative to existing affine DTSMs is that the 
equilibrium nominal interest rate ​​i​ t​ ∗​​ is allowed to be time-varying. This implies that 
bond yields have a common stochastic trend and are ​I(1)​. Imposing a unit root in 
this fashion is a convenient way to account for a very persistent process in a dynamic 
model, and it crystallizes the arguments regarding slow-moving interest rate trends. 
Taken literally, a unit root specification for interest rates is unlikely because nominal 
interest rates appear to have remained bounded over the centuries. However, in finite 
samples, a persistent stationary process can always be approximated arbitrarily well 

28 The Appendix provides expressions for excess returns and the term premium and more details on the role of 
the long-run trend for yields and risk premia.

29 For further discussion of identification requirements in multivariate unobserved components (common 
trends) models, see, for example, Harvey (1990).
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by a unit root process, and it is well known that doing so can often be beneficial 
for forecasting (e.g., Campbell and Perron 1991).30 To illustrate the importance of 
the time-varying trend in interest rates, we will compare our model, which we refer 
to as the “shifting endpoint” (SE ) model, to a conventional DTSM with stationary 
dynamics, a “fixed endpoint” (FE ) model. The latter specification corresponds to a 
restricted special case of our model where ​​i​ t​ ∗​  = ​ i​​ ∗​​, i.e., ​​σ​ η​ 2​  =  0​, which is equiva-
lent to the popular three-factor affine DTSM of Joslin, Singleton, and Zhu (2011).

Another important aspect of our model is that the long-run trend is unspanned 
by the yield curve, that is, the cross section of interest rates at time ​t​ is not deter-
ministically related to ​​i​ t​ ∗​​. Asset pricing models generally imply spanning, since in 
the absence of knife-edge restrictions the state variables can be backed out from the 
yield curve.31 In our model, such inference is not possible because the trend does not 
directly affect yields: conditional on ​​P​t​​​, yields do not load on ​​i​ t​ ∗​​. Therefore, the model 
can match the evidence against the spanning hypothesis documented in Section IIB, 
as we demonstrate below.32 Another important rationale for an unspanned trend is to 
allow it to be unobserved. To incorporate an unobserved components specification 
within a dynamic term structure model, it is necessary for the trend component to be 
unspanned; otherwise, ​​i​ t​ ∗​​ would be completely determined by the time-​t​ yield curve 
and thus observed. A trend hardwired to current interest rates would also result in 
excessively volatile trend estimates.33

Our parsimonious specification can accurately fit the cross section of yields, is 
consistent with absence of arbitrage and time-varying risk premia, and includes a 
stochastic trend in line with much evidence showing that nominal interest rates are 
effectively ​I(1)​. Importantly, changes in ​​i​ t​ ∗​​ may affect expectations of future short 
rates as well as the term premium, and our estimates below will assess the empirical 
importance of a trend in the term premium. While our DTSM framework is quite 
flexible, it is kept deliberately simple by focusing on the nominal yield curve instead 
of separately modeling inflation and real yields. Such a separation, in the spirit of 
Christensen, Lopez, and Rudebusch (2010), would be a useful future extension that 
could differentiate ​​r​ t​ ∗​​ and ​​π​ t​ ∗​​, but it is unnecessary for our purposes of estimating 
nominal risk premia and forecasting nominal Treasury yields.

30 For example, a unit root in inflation may not be literally true, but assuming so often improves forecast perfor-
mance (Faust and Wright 2013).

31 See Duffee (2013). Starting with Duffee (2011), a number of papers have built no-arbitrage models of the 
yield curve that impose such knife-edge restrictions and therefore allow for unspanned factors.

32 A regression of ​​i​ t​ ∗​​ on contemporaneous yields provides an alternative perspective on spanning. For our pre-
ferred ​​i​​ ∗​​ proxy, such a regression gives an ​​R​​ 2​​ of 95 percent, which might seem to suggest that the trend is effectively 
spanned, but this high ​​R​​ 2​​ is misleading because of the presence of stochastic trends. Furthermore, this regression 
does not reveal whether any unspanned information is relevant for risk premia, as noted by Joslin, Priebsch, and 
Singleton (2014).

33 While sufficiently flexible spanned DTSM can generally match the data equally well as the corresponding 
unspanned DTSM, such spanned models require many more parameters (Bauer and Rudebusch 2017). Furthermore, 
this result applies only to models in which the unspanned factors are observed, as in Joslin, Priebsch, and Singleton 
(2014), whereas we allow for the possibility that the trend is unobserved. We have estimated term structure models 
with spanned trend factors and obtained implausibly volatile trend estimates, as movements in long-term yields are 
tightly linked to movements in the trend factor.
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B. Model Estimation

The shifting trend model can be cast in state-space form for estimation. The mea-
surement equation is ​​Y​ t​ o​  =  A + ​BP​t​​ + ​e​t​​​, with ​​e​t​​ ​ ∼​  ​ i.i.d.​ N(0, ​σ​ e​ 2​ ​I​J​​)​. For our data-
set, ​​Y​ t​ o​​ includes ​J  =  17​ yields. The state equation follows from (3).

The common trend in our DTSM is both unspanned and latent, unlike the 
observed unspanned factors in models like Joslin, Priebsch, and Singleton (2014). 
Our specification is therefore effectively an unobserved components model. While 
this is desirable for matching the stylized facts of trends in interest rates, we face 
the usual estimation problem that empirically uncovering long-run trends using lim-
ited sample sizes is intrinsically difficult (Watson 1986). For a very persistent time 
series with relatively infrequent business cycle fluctuations, even several decades of 
data typically contain limited information that can pin down the underlying trend. 
Simply estimating an unobserved components model with maximum likelihood 
methods and no external additional information is problematic and unreliable.34 
Therefore, in the literature, two broad approaches have been used to facilitate esti-
mation of unobserved trends from time series data: the first includes additional data 
or proxies for the trend, the second incorporates prior information about properties 
of the trend such as its smoothness. For robustness, we consider each of these two 
methods for estimating our stochastic trend DTSM.

The first method adds data that can directly help pin down the trend estimate. For 
example, long-run survey expectations of inflation are often used to inform estimates 
of ​​π​ t​ ∗​​ (Kozicki and Tinsley 2012; Del Negro et al. 2017). Similarly, Crump, Eusepi,   
and Moench (2018) uses surveys of professional forecasters to estimate ​​i​ t​ ∗​​ in a fac-
tor model for the yield curve. In this spirit, we use the empirical proxy for ​​i​ t​ ∗​​ equal 
to the sum of the PTR estimate of ​​π​ t​ ∗​​ and our real-time estimate of ​​r​ t​ ∗​​. Section II 
showed that this trend proxy captures low-frequency movements of yields and pre-
dicts excess bond returns. Because we can now treat both ​​i​ t​ ∗​​ and ​​P​t​​​ as observed, esti-
mation is greatly simplified.35 We denote the resulting estimates as the “observed 
shifting endpoint” (OSE ) model. To guard against the problems that the zero lower 
bound (ZLB) on nominal interest rates poses for the estimation of affine yield curve 
models (Bauer and Rudebusch 2016), we estimate the parameters of the OSE model 
using a sample that ends in 2007:IV, before the height of the financial crisis and 
the ZLB period. Once the parameter estimates are obtained, we proceed to use the 
model over the entire sample period.36 We find that the OSE model fits observed 
yields well, with a root mean-squared error of 8 basis points over the full sample. 
The ​​-dynamics are highly persistent, with the largest eigenvalue of ​​Φ​​ ​​ equal to 

34 The likelihood is essentially flat in some dimensions of the parameter space, and numerical optimization leads 
to local optima with very different trend estimates, depending on starting values.

35 Details are in the online Appendix. Treating ​​i​ t​ ∗​​ as observed is justified because maximum likelihood estima-
tion of a state-space model with an additional measurement equation for ​​i​ t​ ∗​​ results in a noise variance essentially 
equal to 0. Treating the yield factors ​​P​t​​​ as observed was proposed and justified by Joslin, Singleton, and Zhu 
(2011). If estimation of the state-space model is desired, excellent starting values for the model’s parameters can be 
obtained from a first-step estimation with observed state variables.

36 An extension of our model to explicitly account for the zero lower bound, for example with a shadow-rate 
specification as in Kim and Singleton (2012) and Bauer and Rudebusch (2016), is conceptually straightforward but 
beyond the scope of this paper.
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0.997. For the real-world dynamics, the mean reversion to the common trend is rel-
atively quick, with the largest eigenvalue of ​Φ​ equal to 0.933.

Our second estimation method of the long-run trend DTSM uses only Treasury 
yield data while making use of prior information in a Bayesian framework. In this 
regard, an effective approach to estimating unobserved trends imposes a tight prior 
distribution for the variance of the trend innovations. Such priors are commonly 
used in a variety of macroeconomic contexts to produce smooth trend estimates, 
consistent with the underlying macroeconomics that such trends are determined by 
gradual variation in structural factors such as demographic change. For interest rates, 
Del Negro et al. (2017) used such a smoothness prior for estimation of ​​r​ t​ ∗​​. Similarly, 
we specify a tight inverse-gamma prior for ​​σ​ η​ 2​​ with a mean of ​​0.06​​ 2​ / 400​, implying 
that the standard deviation of the change in ​​i​ t​ ∗​​ over a century is 6 percent. In light 
of the observed variation in interest rates and our trend proxies, we view this as a 
conservative choice in the sense that it limits the amount of yield variation that can 
be attributed to the long-run trend. Also, we follow Del Negro et al. (2017) by com-
bining this prior with the stationary version of a Minnesota VAR-prior for the cycle 
components ​​​P ̃ ​​t​​​ with the distribution for the diagonal elements of ​Φ​ centered around 
0. We call this representation the “estimated shifting endpoint” (ESE ) model. We 
use largely uninformative priors for the remaining parameters, and design a Markov 
chain Monte Carlo (MCMC) algorithm to simulate draws from the joint posterior 
distribution of the latent state variables and parameters (as described in detail in the 
online Appendix). To account for the ZLB, we treat short-term yields as missing 
observations when they were constrained.37

Figure 4 plots the resulting ESE model estimate of ​​i​ t​ ∗​​, specifically, the posterior 
mean and 95 percent credibility intervals. The ESE model ​​i​ t​ ∗​​ rose until the early 
1980s to over 8 percent and then gradually declined over the following decades to 
just below 3 percent at the end of our sample. For comparison, the ten-year Treasury 
yield and the real-time proxy estimate of ​​i​ t​ ∗​​ are also plotted. The ESE model estimate 
matches the proxy fairly closely and can account for much of the low-frequency 
variation in the ten-year yield. As usual for unobserved trend models, the uncer-
tainty around the estimated trend is quite large. From 2008 to 2015, the estimation 
intervals widen a bit as uncertainty increases because the yield curve is partially 
constrained by the ZLB and is less informative about the underlying trend.

C. Implications for Trend Components of Yields

Section IIA showed that proxies for ​​i​ t​ ∗​​ were important drivers of yields, particularly 
in terms of cointegration. Now we interpret this evidence in the context of our model.

First, note that our shifting-endpoint DTSM can decompose yields into trend and 
cycle components:

(7)	​ ​Y​t​​  = ​ Y​ t​ ∗​ + ​​Y ̃ ​​t​​  =  A + B​P 
–
 ​ + Bγ ​i​ t​ ∗​ + B​​P ̃ ​​t​​, ​ Y​ t​ ∗​  ≡ ​  lim​ 

j→∞
​ 

 
 ​  ​E​t​​ ​Y​t+j​​​.

37 Specifically, three- and six-month yields are assumed to be missing from 2008:IV to 2015:III, the one-year 
yield is omitted from 2011:IV to 2014:III, and the two-year yield is omitted from 2012:IV to 2013:I. The start dates 
of these periods are based on results in Swanson and Williams (2014) while the end dates are when the yields lifted 
off from the ZLB.
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Figure 5 shows the (actual and model-fitted) ten-year yield and its trend and cycle 
components. The trend component accounts for most of the low-frequency move-
ments in the yield, while the cycle component, the model-based analog of the 
regression-based interest rate cycles discussed in Section IIA, exhibits clear mean 
reversion around 0 and little to no apparent trend. This confirms that our model 
accounts for the long-run trend in interest rates.

Second, we can compare the model-implied coefficients of yields on ​​i​ t​ ∗​​ to the 
empirical results we obtained from the cointegration regressions of yields on prox-
ies of ​​i​ t​ ∗​​ in Section IIA. In the model, the trend ​​i​ t​ ∗​​ is unspanned and only indirectly 
affects yields through its relationship with ​​P​t​​​. Equation (7) shows that the implied 
loadings of yields on ​​i​ t​ ∗​​ are ​Bγ​. Figure 6 plots these coefficients, which gradually 
rise from unity at the short end, since ​​i​​ ∗​​ is by definition the trend component of the 
short rate, to around 1.7. In the data, the coefficients (shown with their 95 percent 
confidence intervals) are relatively flat around 1.6–1.9, with a slight hump around 
two years and a gradual decline thereafter. Note that the estimated coefficient for the 
ten-year yield corresponds to the value reported in the last column of Table 1. To 
gauge whether the model is consistent with the estimated cointegration coefficients 
we need to account for sampling uncertainty, hence we simulate 5,000 artificial 
samples of the trend and yields with the same size as the actual data and estimate 
the cointegration regressions in each simulated sample. The 95 percent Monte Carlo 
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Figure 4.  Model-Based Estimate of Equilibrium Interest Rate

Notes: Bayesian (MCMC) estimate, posterior mean and 95 percent-posterior credibility intervals, of the equilib-
rium nominal short rate, ​​i​​ ∗​​, from the estimated shifting endpoint (ESE) dynamic term structure model. Also shown 
is a proxy estimate of ​​i​​ ∗​​, the sum of the PTR estimate of ​​π​​ ∗​​ and the real-time macro estimate of ​​r​​ ∗​​. The data are 
quarterly from 1971:IV to 2018:I.
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intervals of the coefficient estimates, shown as dashed lines in Figure 6, comfortably 
contain the values obtained with the actual data.38

Our results here and in Section IIA show that the trend component of long-term 
Treasury yields moves more than one-for-one with changes in ​​i​ t​ ∗​​: the coefficients 
on ​​i​ t​ ∗​​ are larger than 1. Because expectations of future short rates by definition load 
with a unit coefficient on ​​i​ t​ ∗​​, coefficients above 1 indicate that the term premium 
positively responds to changes in ​​i​ t​ ∗​​. (For a yield of maturity ​n​, the term premium 
loading on ​​i​ t​ ∗​​ is ​​B​ n​ ′ ​ γ − 1​.) That is, our cointegration regressions and the model 
estimates suggest that the term premium responds positively to ​​i​ t​ ∗​​. In Section IIIE, 
we will show the resulting term premium estimates and quantify the relative impor-
tance of the trend in short-rate expectations and in the term premium. Our model 
has similar implications for the trend behavior of the slope of the yield curve. The 
slope, if measured as the simple difference between a long-term yield and the short 
rate, in fact has the exact same trend component and loading on ​​i​ t​ ∗​​ as the term pre-
mium in that long-term yield. While some macroeconomic time series models, 
such as DGGT, assume that separate trends drive short rates and the slope, in our 
no-arbitrage model the slope contains a trend due to the risk in ​​i​ t​ ∗​​.

38 Because our model is stationary under ​​, the infinite-maturity yield is constant, so loadings of yields on all 
risk factors eventually decline to 0 as maturity increases. For maturities of practical interest, say, less than 100 years, 
the loadings on ​​i​ t​ ∗​​ are notably larger than 1 (as discussed in the online Appendix).
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Figure 5.  Trend and Cycle Components of Ten-Year Yield

Notes: Model-based decomposition of ten-year yield into trend and cycle components. Blue lines show trend and 
cycle (posterior means) for the model with estimated shifting endpoint (ESE), shaded area shows 95 percent-posterior 
credibility intervals for trend component; red lines show trend and cycle for model with observed shifting endpoint 
(OSE). The data are quarterly from 1971:IV to 2018:I.
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D. Model-Based Explanation of Excess Return Predictability

A key stylized fact from Section II is that various measures of the long-run trends 
in interest rates have substantial predictive power for excess bond returns, and this 
additional information is not spanned by the first three principal components of 
yields. To explain this result with our shifting endpoint DTSMs, we first simulate 
5,000 artificial samples from each of our three models: the FE model with stationary 
yields, the OSE model with an observed trend proxy, and the ESE model with an 
estimated trend.39 We then run excess return regressions using the simulated data-
sets from the three models, and report the means and the 2.5th and 97.5th percentiles 
of the resulting Monte Carlo distributions.

Table 4 presents the R2 results from the actual and simulated data. The top row 
reports the R2 for the predictive regressions of excess bond returns using actual data 
with and without ​​i​ t​ ∗​​ as an additional predictor, as described in Section IIB (corre-
sponding to the estimates in the first and last columns of Table 2). The reported ​Δ​ R2 

shows the substantial predictive gains from including the macro trend proxy.

39 For the FE model, we separately simulate ​​i​ t​ ∗​​ from a random walk process using the OSE parameters.
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Figure 6.  Loadings of Yields on the Equilibrium Interest Rate

Notes: Comparison of loadings of Treasury yields on the equilibrium nominal short rate ​​i​ t​ ∗​​ in the data and in the 
shifting-endpoint dynamic term structure model. Data: regression coefficients (with 95 percent-confidence inter-
vals) for cointegration regressions of yields on the proxy-estimate of ​​i​ t​ ∗​​ (the PTR estimate of ​​π​​ ∗​​ plus the real-time 
macro estimate of ​​r​​ ∗​​). Model: loadings of yields on ​​i​ t​ ∗​​ in population and 95  percent-Monte Carlo intervals for 
regression coefficients in small samples simulated from the model with an observed shifting endpoint (OSE).
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The remaining rows of Table 4 provide results using data simulated from the FE, 
OSE, and ESE models. For the FE model, there are essentially no predictive gains 
on average from adding ​​i​ t​ ∗​​ to the yield principal components, with a mean ​Δ​ R2 
of 1 percentage point. This is not surprising because this model imposes the null 
hypothesis that ​​i​ t​ ∗​​ truly has no predictive power. The upper bound of the Monte 
Carlo interval (4  percentage points) is much lower than the actual improvement 
in R2 from adding trends in the data (12  percentage points), consistent with our 
rejections of the spanning hypothesis in Section IIB using the bootstrap, which also 
simulated data under the null hypothesis.

For the OSE model, the predictive gains from adding ​​i​ t​ ∗​​ are large: the mean gain 
of 9 percentage points is close to the ​Δ​ R2 of 12 percentage points in the actual 
data. Importantly, the Monte Carlo interval comfortably contains the value found 
in the data. For the ESE model, the results are similar, with large model-implied 
predictive gains from including the trend as an additional predictor. Overall, the 
shifting-endpoint models accurately replicate the actual predictive gains from add-
ing ​​i​ t​ ∗​​ in regressions for excess bond returns.

In our shifting-endpoint model, shifts in ​​i​ t​ ∗​​ are unspanned by the yield curve by 
construction. Why are changes in the trend unspanned in the data? The intuitive rea-
son is the following: shifts in the level of the yield curve can occur because of either 
changes in the underlying trend (see the loadings in Figure 6) or because of move-
ments in interest rates relative to the trend. These two drivers have opposite impli-
cations for expectations of future bond returns, and investors cannot distinguish 
between them based on observed yields alone.40 Therefore, yields and macro trends 
contain important separate pieces of information for predicting future interest rates.

To better understand the predictability of excess bond returns through the lens of 
our model, we examine model-implied expected excess bond returns analytically. 

40 Even in a term structure model with a spanned trend, the cross-sectional loadings of yields on ​​i​ t​ ∗​​ would differ 
only slightly from the loadings of the level factor in detrended yields, and small measurement errors would make 
them effectively indistinguishable (Jørgensen 2017).

Table 4—Model-Implied Predictability of Excess Bond Returns

​​R​​ 2​​ PCs only ​​R​​ 2​​ with ​​i​ t​ ∗​​ ​Δ ​R​​ 2​​
Data 0.09 0.21 0.12
FE model 0.09 0.10 0.01

[0.04, 0.17] [0.04, 0.17] [0.00, 0.04]
OSE model 0.10 0.19 0.09

[0.04, 0.17] [0.13, 0.26] [0.02, 0.18]
ESE model 0.07 0.14 0.08

[0.02, 0.13] [0.05, 0.27] [0.00, 0.20]

Notes: The ​​R​​ 2​​ of predictive regressions for quarterly excess bond returns, averaged 
across maturities of 2 to 15 years. The ​​R​​ 2​​ in the data correspond to the full-sample esti-
mates in Table 2 (first and last columns). The model-implied ​​R​​ 2​​ are based on 5,000 simula-
tions of artificial datasets of the same size as the full sample. The table reports means and 
95 percent Monte Carlo intervals (in square brackets) of the ​​R​​ 2​​ of predictive regressions esti-
mated in these simulated data. 
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Leaving aside constant terms that are irrelevant for predictability, bond risk pre-
mia are

(8)	​ ​E​t​​ r ​x​ t+1​ 
​(n)​ ​  = ​ ​ n−1​ ′ ​​ (​E​t​​ ​P​t+1​​ − ​E​ t​ 

​ ​P​t+1​​)​​

(9)	​ = ​ ​ n−1​ ′ ​ ​[​( ​I​N​​ − Φ)​γ ​τ​t​​ + ​(Φ − ​Φ​​ ​)​​P​t​​]​​,

where ​​​n​​​ contains the affine loadings of the log bond price ​​p​ t​ (n)​​ on the risk factors ​​P​t​​​. 
Equation (8) shows that time variation in bond risk premia is due to differences 
in expectations of future yields under the physical and risk-neutral probabil-
ity measures. In the presence of an unspanned trend in yields, as in our model, 
physical-measure expectations depend not only on current yields (​​P​t​​​) but also on 
the shifting endpoint ​​i​ t​ ∗​​. Thus, bond risk premia depend on both as well, as evident 
in (9). Ignoring the trend misses an important part of the variation in ​​E​t​​ ​P​t+1​​​ and 
understates the predictability of bond returns.

A final point concerns the role of detrended yields, which we have shown in 
Section IIB to capture most of the variation in bond risk premia. Our model implies 
that the term premium and excess returns also have a small trend component, mean-
ing that detrended yields cannot fully explain movements in bond risk premia. 
Empirically, however, when predicting excess bond returns it is of first-order impor-
tance to account for the trend in yields, and only of second-order importance to sep-
arately account for the trend when conditioning on detrended yields (as described 
in the Appendix).

E. The Term Premium in Long-Term Yields

Another perspective on the pricing of risk in Treasury bonds is given by the term 
premium in long-term interest rates. As evident from the definition in equation (1), 
estimating the term premium requires long-horizon projections of future short-term 
rates, which will depend crucially on the nature of the long-run trend in interest 
rates.41 Furthermore, because the term premium is the average of expected future 
excess bond returns, ​T ​P​ t​ (n)​  = ​ n​​ −1​ ​∑ j=0​ n−2

 ​​ ​E​t​​ r ​x​ t+j+1​ 
(n−j )

 ​​, our results about the importance 
of a trend in interest rates for predictions of excess bond returns suggest that this 
trend should matter for the estimation of term premia as well.

Our baseline for comparison is the FE model in which the state variables follow 
a stationary VAR. This special case of our no-arbitrage model with a constant end-
point ​​i​ t​ ∗​  = ​ i​​ ∗​​ is representative of the conventional DTSM in the literature. Panel A 
of Figure 7 shows the five-to-ten-year forward rate as well as its expectations com-
ponent, i.e., the “risk-neutral rate,” and the term premium as estimated from the FE 
model.42 The expectations component is estimated to be very stable, and it remains 
near the unconditional mean of the short rate, the fixed endpoint ​​i​​ ∗​​. Therefore, the 
term premium, the residual, has to account for the trend in the long-term interest rate 
since the 1980s. As argued by Kim and Orphanides (2012) and Bauer, Rudebusch, 

41 In a DTSM, the term premium is defined as the difference between model-implied yields and risk-neutral 
yields, which differ from average expected short rates only by a convexity term. See the Appendix for details.

42 Results for the ten-year yield are qualitatively similar.
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and Wu (2012), among others, such behavior by the expectations component and the 
term premium appears at odds with observed trends in survey-based expectations 
(Kozicki and Tinsley 2001) and with the cyclical behavior of risk premia in asset 
prices (Fama and French 1989). By allowing for a long-run trend in interest rates, 
we avoid such counterfactual decompositions of long-term rates into expectations 
and term premia. Panel B of Figure 7 shows the estimates for the risk-neutral rate 
and the term premium from our no-arbitrage OSE and ESE models.43 For these 
shifting-endpoint models, short-rate expectations are anchored at ​​i​ t​ ∗​​, and the cycle 
components ​​​P ̃ ​​t​​​ mean-revert relatively quickly; hence, the expectations component 
of the five-to-ten-year forward rate closely mirrors this trend. Movements in the 
expectations component account for the majority of the low-frequency variation in 
the observed interest rate. In particular, the estimates exhibit a pronounced down-
ward trend since the 1980s due to the decline in ​​i​ t​ ∗​​.

Our shifting-endpoint models attribute a majority of the secular decline in interest 
rates not to the term premium but instead to the decline in long-run expectations 

43 For the OSE model, the risk-neutral rate and term premium is calculated using point estimates of the parame-
ters. For the ESE model, we calculate the means of the MCMC posterior distribution for these objects.
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Figure 7.  Expectations and Term Premium Components in Long-Term Interest Rates

Notes: Five-to-ten-year forward rate with estimated expectations component (risk-neutral rate) and term premium. 
Panel A: conventional dynamic term structure model (DTSM) with a fixed endpoint ​​i​​ ∗​​ (Joslin, Singleton, and Zhu, 
2011). Panel B: DTSM with a common stochastic trend, where the shifting endpoint is either estimated (ESE, esti-
mated shifting endpoint) or taken as observed using a proxy of ​​i​ t​ ∗​​ (OSE, observed shifting endpoint). The data are 
quarterly from 1971:IV to 2018:I.
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of future short-term rates. The drop in the forward rate from its average during 
1980–1982 to its average during 2015–2017 was close to 10  percentage points. 
According to the stationary FE model, the estimated term premium accounts for 
75 percent of this decline. In contrast, the shifting-endpoint models attribute only 
35 percent (OSE ) and 37 percent (ESE ) to the term premium, while attributing the 
majority to a falling expectations component, in line with the substantial downward 
shift in the underlying macro trends.44 Furthermore, the estimated term premium 
with a shifting endpoint exhibits more pronounced cyclical variation, in line with 
the notion that risk premia are countercyclical (Fama and French 1993; Cochrane 
and Piazzesi 2005). This stark difference demonstrates how accounting for the 
slow-moving trend component in interest rates fundamentally alters our understand-
ing of the driving forces of long-term interest rates, and bridges the gap between 
the secular trends in macroeconomics and no-arbitrage models for the yield curve.

Although the shifting-endpoint models attribute most of the trend in the for-
ward rate to the expectations component, the estimated forward term premium does 
exhibit some moderate low-frequency swings, declining from around 4–5 percent 
in the early 1980s to about 0–1  percent at the end of the sample. The reason is 
that long-term interest rates exhibited more pronounced secular movements than 
our estimates of ​​i​ t​ ∗​​, and expectations move one-for-one with ​​i​ t​ ∗​​, thus the estimated 
term premium also contains a trend component.45 In other words, our estimates 
show that changes in the trend carry a positive risk premium. From a macro-finance 
perspective, some downward trend in the term premium since the 1980s is plausi-
ble. Notably, inflation risk declined substantially over this period as average infla-
tion declined, and the term premium includes compensation for this risk (Wright 
2011).46 In sum, the decline in the term premium is much more moderate and more 
plausible with a shifting rather than a fixed endpoint.

Using a shifting-endpoint model with a slow-moving trend component solves the 
knife-edge problem of Cochrane (2007), who pointed out that assuming either sta-
tionarity or a random walk for the level of interest rates leads to drastically different 
implications for expectations and term premia, in both cases at odds with widely 
held views about interest rates. Imposing a random walk for the level is known to 
forecast well but leads to the implausible implication that the expectations compo-
nent accounts for essentially all variation in yields. Imposing stationarity, as shown 
in panel A of Figure 7, leads to the implausible implication that the term premium 
component accounts for all of the low-frequency variation in yields. Our approach 
of assuming that interest rates contain a slow-moving common trend avoids both 
extremes. It also delivers term premium estimates that are in line with the common 
macro-finance priors and produces interest rate forecasts that outperform the ran-
dom walk, as we will show below.

44 Some researchers estimate stationary DTSMs with a sample beginning in, say, the mid-1980s to avoid the 
earlier shifts in inflation, but our comparison results were little changed using a post-1984 sample.

45 As discussed in Section IIIC, yields load on ​​i​ t​ ∗​​ with coefficients larger than unity, and the term premium con-
sequently has a positive loading on this trend.

46 Furthermore, in theory, a decline in the term premium is consistent with the fall in the covariance between 
nominal bond returns and stock returns since the 1980s, as emphasized by Campbell, Sunderam, and Viceira (2017). 
A decline in real risk premia would also be implied by a change in business cycle dynamics that increased persistent 
risk relative to transitory risk, as described by Campbell (1986) and Beeler and Campbell (2012).
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In recent work, Crump, Eusepi, and Moench (2018) estimates the term premium 
from a statistical model with shifting endpoints and find a somewhat more variable 
term premium than we do. Based on their estimates, the term premium accounts for 
just over one-half of the variance of long-term interest rates, whereas it accounts for 
about one-third according to our estimates.47 While we use an arbitrage-free term 
structure specification, the different results largely reflect how the shifting endpoint 
is identified. Crump et al. uses survey data, and their ​​i​ t​ ∗​​ closely mirrors long-run 
survey expectations of the three-month T-bill rate. This estimate of ​​i​ t​ ∗​​ is fairly stable 
and implies a somewhat more limited role for trends and long-run expectations and 
greater variability in the residual term premium.

Finally, we note that when interpreting model-based estimates of the term pre-
mium, it is important to keep in mind that they assume rational expectations, which 
may not represent the expectations of investors at each point in time. As shown by 
Piazzesi, Salomao, and Schneider (2015) and Cieslak (2018), statistical estimates of 
risk premia are affected by persistent forecast errors by investors, i.e., deviations from 
rational expectations.48 While this caveat also applies to our estimates, models like 
ours that allow for shifting endpoints are better suited to capture changes in long-run 
investor expectations that can result from learning about macroeconomic trends and 
policies. Estimates of such models are also much less sensitive to the choice of sam-
ple period than stationary DTSMs, which require inference about the unconditional 
mean of the short-term interest rate, assumed to be constant (Orphanides and Wei 
2012). For these reasons, our shifting-endpoint model is likely to be better able to 
recover true historical investor expectations and bond risk premia.

F. Out-of-Sample Forecasts of Interest Rates

We now turn to out-of-sample (OOS) forecasts of long-term interest rates using 
our new shifting-endpoint DTSM. Despite many advances in yield curve modeling, 
the random walk model has proven very hard to beat when forecasting bond yields, 
largely reflecting the extreme persistence of interest rates (Duffee 2013). But our 
results so far suggest that one might be able to obtain more accurate forecasts by 
accounting for the interest rate trend.

We construct out-of-sample forecasts using the OSE model, which proxies for ​​i​ t​ ∗​​ 
with the sum of the PTR estimate for ​​π​ t​ ∗​​ and the real-time estimate of ​​r​ t​ ∗​​ described 
in Section  I. We will compare these forecasts to those from the FE model and 
from a driftless random walk.49 The models are recursively estimated, that is, 
using an expanding estimation window using all data available up to each forecast 

47 Specifically, we calculated the same decomposition of the sample variance of forward rates as in Table 2 of 
Crump, Eusepi, and Moench (2018). At maturities of five years and beyond, they find that 53 to 56 percent of the 
variance of level is explained by the forward term premium. By contrast, using their sample period, we find that only 
35 percent of the variance is explained by the term premium.

48 While some might recommend that estimates of term premia should therefore rely exclusively on survey 
expectations, there is no guarantee that expectations from surveys of professional forecasters are any closer to the 
true subjective expectations of bond traders than statistical models.

49 We do not include estimates from the ESE model because the estimation of this model using our MCMC 
sampler takes a significant amount of time, which renders recursive estimation with each additional available obser-
vation period as required for out-of-sample forecasting computationally too burdensome.
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date, starting in 1976:I when five years of data are available.50 We focus on fore-
casts of the ten-year yield; we have found results for other maturities to be qual-
itatively similar. We forecast at horizons of 4, 10, 20, 30, and 40 quarters, and 
because our data end in 2018:II the last forecast date is 2008:II, for a total of 127 
(overlapping) forecasts.51 Panel A of Table 5 reports the root mean-squared errors 
in percentage points. We also calculate p-values for tests of equal finite-sample 
forecast accuracy using the approach of  Diebold and Mariano (1995)—hence-
forth, DM.52 We calculate the DM p-values using standard normal critical values 
for one-sided tests of the null hypothesis that the OSE model does not improve 
upon the RW or FE forecasts. We find that the forecasts from our common-trend 
model OSE are substantially and statistically significantly more accurate than the 
FE model. For example, when forecasting 10 years ahead, model OSE lowers the 

50 A rolling scheme, which uses only a fixed number of observations for parameter estimation, allows for an eas-
ier asymptotic justification of tests for predictive ability (Giacomini and White 2006) but requires a specific choice 
of the window length. We have also obtained forecasts with such a scheme, using a variety of different window 
lengths, and found qualitatively similar results as when using a recursive scheme.

51 The last date for which we re-estimate the models is 2007:IV, consistent with Section IIIB.
52 Following common use, we construct the DM test with a rectangular window for the long-run variance and 

the small-sample adjustment of Harvey, Leybourne, and Newbold (1997). Monte Carlo evidence in Clark and 
McCracken (2013) indicates that this test has good size in finite samples. However, for very long forecast horizons, 
the long-run variance is estimated with considerable uncertainty because there are only a few such non-overlapping 
observations in our sample.

Table 5—Accuracy of Out-of-Sample Forecasts for the Ten-Year Yield

Horizon in quarters

4 10 20 30 40

Panel A. Quarterly sample, 1976:III–2008:I (127 quarters)
Random walk (RW) 1.33 1.85 2.52 2.60 2.88
Fixed endpoint (FE) 1.42 2.25 3.28 3.72 4.19
Observed shifting endpoint (OSE) 1.17 1.76 2.37 2.39 2.60

​p​-value: OSE ​≥​ RW 0.05 0.00 0.00 0.03 0.04
​p​-value: OSE ​≥​ FE 0.00 0.00 0.01 0.03 0.05

Horizon in years
1 2 3 4 5

Panel B. Blue Chip sample, 1988:I–2011:IV (48 Blue Chip surveys)
Blue Chip (BC) 1.06 1.39 1.59 1.79 1.99
Random walk (RW) 0.85 1.08 1.21 1.37 1.56
Fixed endpoint (FE) 1.53 2.08 2.52 2.96 3.34
Observed shifting endpoint (OSE) 0.87 0.95 1.04 1.18 1.37

​p​-value: OSE​ ≥ ​BC 0.10 0.08 0.15 0.18 0.20
​p​-value: OSE ​≥​ RW 0.58 0.05 0.01 0.04 0.08
​p​-value: OSE ​≥​ FE 0.00 0.00 0.00 0.00 0.00

Notes: Root mean-squared errors for forecasts for the ten-year Treasury yield. Method RW is a driftless random 
walk, FE is a common stationary dynamic term structure model (DTSM), which has a fixed endpoint, and OSE is a 
model with an observed shifting endpoint that uses the proxy ​​i​ t​ ∗​  = ​ π​ t​ ∗​ + ​r​ t​ ∗,RT​​. The data are quarterly from 1971:IV 
to 2018:I. Panel A: forecasts for horizons from 4 to 40 quarters made each quarter from 1976:III (once five years of 
data are available) to 2008:I for a total of 127 (overlapping) observations. Panel B: forecasts for horizons from 1 to 
5 years (yearly averages of quarterly forecasts) made each quarter preceding a Blue Chip survey (long-range fore-
casts in Blue Chip Financial Forecasts) from 1988:I to 2011:IV (48 surveys). Models are re-estimated each quarter 
up to 2007:IV (expanding window). Last rows in each panel report one-sided ​p​-values for testing the null hypothe-
sis of equal forecast accuracy against the alternative that method OSE is more accurate, using the method of Diebold 
and Mariano (1995) with a small-sample correction.
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RMSE by about 40 percent relative to the FE model. The improvements relative 
to the RW are smaller but still statistically significant.53 These results document 
that, relative to conventional stationary models, more accurate Treasury yields 
forecasts can be obtained by allowing for an underlying common trend in interest 
rates. Gains are even possible relative to the random walk benchmark. In contrast 
to the random walk forecast, which simply assumes all changes are permanent, 
accounting for ​​i​ t​ ∗​​, the underlying source of the highly persistent changes in interest 
rates, improves forecast accuracy.54

Finally, we compare the accuracy of our statistical models to that of professional 
forecasters. Since 1988, the Blue Chip Financial Forecasts (BC ) survey has asked its 
respondents for long-range forecasts of interest rates twice a year (Wolters Kluwer 
2019). The respondents provide their average expectations of the target variable for 
each of the upcoming five calendar years and for the subsequent five-year period: 
we will focus on the five annual forecast horizons. We match the available infor-
mation sets by using only data up to the quarter preceding the survey date for our 
model-based forecasts, and we exactly match the forecast horizons with the BC fore-
casts by taking averages of model-based forecasts over the relevant calendar years. 
The sample includes 48 forecast dates from March 1988 to December 2011. Panel 
B of Table 5 shows the RMSEs of the survey forecasts and the three model-based 
forecasts. Shifting-endpoint forecasts based on ​​i​ t​ ∗​​ improve over the RW forecasts in 
this sample as well, which are better than the BC forecasts. Because of the smaller 
sample size and substantial overlap, the gains of the OSE model are not as strongly 
significant, and for some horizons they are insignificant. The gains relative to the FE 
model are again strongly significant. The reason for the poor performance of the sur-
vey forecasts is that they consistently overpredict future yields, in particular at long 
horizons (results not shown). Other studies have documented the poor performance 
of survey forecasts of interest rates (e.g., van Dijk et al. 2014), which contrasts with 
the good performance of survey-based inflation forecasts (Ang, Bekaert, and Wei 
2007; Faust and Wright 2013). Our results suggest that the underlying reason for this 
poor performance is that professional forecasters have not sufficiently accounted for 
the shifting long-run trend component in interest rates.

IV.  Conclusion

This paper bridges the gap between macroeconomic and finance views of long-run 
trends. We provide new evidence that interest rates and bond risk premia are deter-
mined over time by variation in the perceived trend in inflation and the equilibrium 
real rate of interest. Indeed, allowing for persistent shifts in ​​π​ t​ ∗​​ and ​​r​ t​ ∗​​ is crucial to 
account for yield dynamics. To understand and forecast long-term interest rates and 
bond returns requires a time-varying trend component in yields. In the recent period, 
variation in the equilibrium real rate is even more consequential than movements in 

53 Additional, unreported analysis, using plots of differences in cumulative sums of forecast errors over time, 
shows that the forecast gains of OSE are not driven by certain unusual subperiods but instead are a consistent pattern 
over most of our sample period.

54 Earlier research by van Dijk et al. (2014) found that, when forecasting interest rates, it is beneficial to link 
long-run projections of interest rates to long-run expectations of inflation, but their forecasts do not account for time 
variation in ​​r​ t​ ∗​​ and are not based on an arbitrage-free model.
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the inflation trend. Our analysis started by establishing the links between macro-
economic trends and yields using trend estimates from surveys and macroeconomic 
and statistical models. However, to understand these results, we formulated and 
estimated a new no-arbitrage model that simultaneously models the long-run trend 
and term premium in yields, a key contribution of our analysis. In particular, when 
estimated with just yield curve data, this model, which embeds a nonstationary ​​i​ t​ ∗​​, 
provides a new finance-based measure of the trend in nominal interest rates that 
complements estimates in the macroeconomics literature. It also provides for the 
first time an internally consistent formulation of that equilibrium trend and bond 
risk premia.

Instead of the ubiquitous stationary dynamic yield curve models with constant 
means, our results strongly support specifications that allow for slow-moving 
changes in the long-run means of nominal and real interest rates. Building upon 
our new common-trend dynamic term structure model, much work remains in 
jointly estimating macro trends and yield curve dynamics. Three future research 
avenues seem particularly promising. First, a joint model with shifting endpoints 
of real yields, nominal yields, and inflation expectations could provide separate 
estimates of ​​π​ t​ ∗​​ and ​​r​ t​ ∗​​. Second, combining our shifting-endpoint DTSM specifica-
tion with the shadow-rate paradigm (Bauer and Rudebusch 2016) would allow for 
a sophisticated treatment of the effective lower bound on interest rates, which may 
provide additional insights into macro and yield-curve trends over the post-crisis 
period. Third, one could consider time variation in the variability of trends by add-
ing stochastic volatility (as in Stock and Watson 2007) in order to assess how our 
(mostly unconditional) results about the relative importance of trends are affected 
by taking a conditional perspective.

Appendix

A. Trend Estimates

Table A1 provides an overview of all of the trend estimates used in our analysis. 
The first five estimates of ​​r​ t​ ∗​​ are obtained from models in published studies, and the 
following four estimates of ​​r​ t​ ∗​​ are new. In Section II, we use a “filtered” estimate and 
a “real-time” estimate of ​​r​ t​ ∗​​, which are averages of the three filtered and six real-time 
estimates, respectively. The real-time estimate of ​​i​ t​ ∗​​ is the sum of the PTR estimate 
of ​​π​ t​ ∗​​ and the real-time estimate of ​​r​ t​ ∗​​. The ESE model estimate of ​​i​ t​ ∗​​ is described in 
Section IIIB.

Our proxy estimate of the inflation trend ​​π​ t​ ∗​​ is the Fed’s PTR measure, the per-
ceived target rate (PTR) of inflation; see Federal Reserve Board of Governors 
(2019b). PTR, which is part of the Fed’s FRB/US macroeconomic model, measures 
expectations for inflation in the price index of personal consumption expenditures 
(PCE). Consistent with this definition, our estimates of ​​r​ t​ ∗​​ are based on real interest 
rates relative to PCE inflation. Since 1979, PTR corresponds to long-run inflation 
expectations from the Survey of Professional Forecasters (SPF). Before 1979, it 
is based on estimates from a learning model for expected inflation. For details see 
Brayton and Tinsley (1996). Data are available at https://www.federalreserve.gov/
econresdata/frbus/us-models-package.htm.

https://www.federalreserve.gov/econresdata/frbus/us-models-package.htm
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The estimates of ​​r​ t​ ∗​​ are plotted and described in the online Appendix. All of these 
estimates are based on the assumption that the real rate contains a stochastic trend, 
i.e., a stochastic endpoint.

B. A Shifting-Endpoint Dynamic Term Structure Model

Equation (3) specifies the evolution of the state variables ​​Z​t​​  =  (τ, ​P​ t​ ′ ​ )′​ under the 
real-world/physical probability measure ​​. It has the form of a common trends rep-
resentation and shows that ​​Z​t​​​ is trivially cointegrated with one common trend. The 
same holds for yields, see equation (7). The VAR representation is

(B1)	​ ​Z​t​​  = ​ μ​Z​​ + ​Φ​Z​​ ​Z​t−1​​ + ​v​t​​,  ​  v​t​​  = ​ (​η​t​​, ​u​ t​ ′ ​)​′​,

with

	​ ​μ​Z​​  = ​ (​ 
0
​ ​(​I​n​​ − Φ)​​P 

–
 ​
​)​,  ​  Φ​Z​​  = ​ (​ 

1
​ 

​0​1×N​​
​  ​(​I​N​​ − Φ)​γ​  Φ ​ )​​,

​​Ω​v​​  =  E​(​v​t​​ ​v​ t​ ′ ​)​  = ​
(

​ 
​σ​ η​ 2​

​ 
γ′ ​σ​ η​ 2​

​ 
γ ​σ​ η​ 2​

​ 
Ω

 ​
)

​​.

The innovations to ​​P​t​​​ are ​​u​t​​  =  γ ​η​t​​ + ​​u ̃ ​​t​​​ and have covariance matrix ​
Ω  =  E(​u​t​​ ​u​ t​ ′ ​ )  =  γγ′ ​σ​ η​ 2​ + ​Ω ̃ ​​.

Equation (6) specifies the evolution under the risk-neutral measure ​​. We assume 
that under ​​ the yield factors follow a stationary VAR. This specification avoids 
the counterfactual implication of a unit root under ​​ that yields and forward rates 
diverge to minus infinity with maturity.

Table A1—Overview of Trend Estimates

Trend Source Real-time Filtered Smoothed

​​r​​ ∗​​ Del Negro et al. (2017) (DGGT) ✓ ✓
Johannsen and Mertens (2016) (JM) ✓ ✓
Laubach and Williams (2016) (LW) ✓ ✓
Holston, Laubach, and Williams (2017) (HLW) ✓
Kiley (2015) ✓ ✓

​​r​​ ∗​​ UC ✓ ✓
Proxies ✓ ✓
SSM ✓ ✓
MA ✓

​​π​ t​ ∗​​ PTR ✓

​​i​​ ∗​​ Real-time ✓
ESE ✓

Notes: Overview of trend estimates used in the paper: five external sources of ​​r​​ ∗​​, our own four estimates of ​​r​​ ∗​​, the 
PTR estimate of ​​π​​ ∗​​, and two ​​i​​ ∗​​ estimates. Real-time indicates (pseudo) real-time estimation of the trend proxy, fil-
tered indicates estimates from a (one-sided) Kalman filter using full-sample parameter estimates, and smoothed 
indicates (two-sided) Kalman smoother or full-sample Bayesian estimate of the trend. All trend estimates are quar-
terly from 1971:IV to 2018:I.
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From the short rate equation (5) and the ​​-dynamics (6), it follows that the trend ​​τ​t​​​ 
is unspanned by yields, meaning that there is no deterministic mapping from ​​P​t​​​ (or 
yields) to ​​τ​t​​​. Formally, the requirement for ​​τ​t​​​ to be an unspanned risk factor is

	​ ​E​​ ​​(​i​t+h​​ | ​P​t​​, ​τ​t​​)​  = ​ E​​ ​​(​i​t+h​​ | ​P​t​​)​,  for all h​,

see Joslin, Priebsch, and Singleton (2014), which holds true because neither the 
short rate ​​i​t​​​ nor expectations of future yield factors ​​P​t+h​​​ depend on ​​τ​t​​​ once we condi-
tion on ​​P​t​​​. The key features of the risk-neutral distribution for ​​P​t​​​ are its stationarity 
and its independence of ​​τ​t​​​.

The dynamics under ​​ and ​​ together imply a stochastic discount factor (SDF) 
and prices of risk. The SDF is the projection of the economy-wide SDF on the risk 
factors driving bond prices, ​​P​t​​​, as in Joslin, Priebsch, and Singleton (2014). As usual 
in affine DTSMs, the SDF is exponentially affine:

(B2)	​ ​M​t+1​​  =  exp​(− ​i​t​​ − ​ 1 _ 
2
 ​ ​λ​ t​ ′ ​  ​λ​t​​ − ​λ​ t​ ′ ​ ​ε​t+1​​)​​,

with ​​ε​t​​  = ​ L​​ −1​ ​u​t​​​, where ​LL′  =  Ω​. The risk prices ​​λ​t​​​ are affine in ​​Z​t​​​:

(B3)	​ ​λ​t​​  = ​ Ω​​ − 1/2​ ​(​λ​0​​ + ​λ​1​​ ​Z​t​​)​​,

where ​​λ​0​​​ is a ​N​-vector and ​​λ​1​​​ is a ​N × (N + 1)​ matrix of risk sensitivities. The 
online Appendix shows that

(B4)	​ ​λ​0​​  = ​ (​I​n​​ − Φ)​​P 
–
 ​ − ​μ​​ ​​

and

(B5)	​ ​λ​1​​  = ​ [​(​I​N​​ − Φ)​γ, Φ − ​Φ​​ ​]​​.

A “knife-edge” restriction is imposed so that ​​τ​t​​​ does not affect ​​E​​ ​(​P​t+1​​ | ​Z​t​​)​. Namely, 
the risk prices ​​λ​t​​​ respond exactly in the same way to changes in ​​τ​t​​​ as do the expec-
tations ​E(​P​t+1​​ | ​Z​t​​)​, and the sensitivities in each case are ​(​I​N​​ − Φ)γ​. This restriction 
implies that movements in ​​τ​t​​​ lead to changes in term premia that exactly offset the 
changes in expectations, leaving yields unchanged.

Prices of zero-coupon bonds are exponentially affine, so that for the log-price of 
an ​n​-period bond we have ​​p​ t​ (n)​  = ​ ​n​​ + ​​ n​ ′ ​ ​P​t​​​, and the coefficients follow the usual 
recursions (e.g., Ang and Piazzesi 2003):

(B6)	​ ​​n+1​​  = ​ ​n​​ + ​​ n​ ′ ​ ​μ​​ ​ + ​ 1 _ 
2
 ​ ​​ n​ ′ ​ Ω ​​n​​ − ​δ​0​​​,

(B7)	​ ​​n+1​​  = ​ (​Φ​​ ​)​′ ​​n​​ − ​δ​1​​​,

with initial conditions ​​​0​​  =  0​ and ​​​0​​  =  0​. Yields are affine functions of the 
factors:

	​ ​y​ t​ 
​(n)​​  = ​ A​n​​ + ​B​ n​ ′ ​ ​P​t​​,  ​  A​n​​  =  −​ 1 _ n ​ ​​n​​,  ​  B​n​​  =  −​ 1 _ n ​ ​​n​​​.
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If we denote the vector of ​J​ yields that are included in our model as ​​Y​t​​​, we 
can write ​​Y​t​​  =  A + ​BP​t​​​ for ​J​-vector ​A  =  (​A​​n​1​​​​, …, ​A​​n​J​​​​)′​ and ​J × N​ matrix ​

B  =  (​B​​n​1​​​​, …, ​B​​n​J​​​​)′​. For forward rates ​​f​ t​  (n)​  = ​ p​ t​ (n)​ − ​p​ t​ (n+1)​​ the online Appendix 
shows that

(B8)	​ ​f​ t​ 
 ​(n)​​  =  − ​ 1 _ 

2
 ​ ​​ n​ ′ ​ Ω ​​n​​ + ​δ​0​​ − ​​ n​ ′ ​ ​μ​​ ​

	 + ​δ​ 1​ ′ ​​​(​Φ​​ ​)​​​ 
n
​ ​P – ​ + ​δ​ 1​ ′ ​​​(​Φ​​ ​)​​​ 

n
​γ ​τ​t​​ + ​δ​ 1​ ′ ​​​(​Φ​​ ​)​​​ 

n
​ ​​P ̃ ​​t​​​.

The convexity term in the expression for forward rates is ​−(1/2)​​ n​ ′ ​ Ω ​​n​​​. Since 
the ​​-dynamics are stationary, ​​​n​​​ converges to a finite limit as ​n​ tends to infinity, 
along with the convexity in yields and forward rates. If, by contrast, ​​Φ​​ ​​ had an 
eigenvalue on the unit circle, convexity and therefore yields and forward rates would 
diverge to minus infinity. This fact, discussed in Campbell, Lo, and  MacKinlay 
(1997, p. 433), is an important reason why term structure models are usually speci-
fied with stationary risk-neutral dynamics, and we follow this tradition here.

Loadings of yields and forward rates on the trend ​​τ​t​​​ are hump-shaped with respect 
to maturity. Short rate loadings equal 1 since ​​τ​t​​  = ​ i​ t​ ∗​​. For longer maturities in our 
sample, the term premium responds positively to ​​τ​t​​​, so yields move more than 
one-for-one with the trend. Eventually, loadings decline very gradually toward their 
limit of 0, and the infinite-maturity forward rate/bond yield is a constant. Further 
details are provided in the online Appendix.

Model-implied excess bond returns are

(B9)	​ r ​x​ t+1​ 
​(n)​ ​  =  − ​ 1 _ 

2
 ​ ​​ n−1​ ′ ​  Ω ​​n−1​​ + ​​ n−1​ ′ ​ ​(​E​t​​ ​P​t+1​​ − ​ℰ​ t​ ​ ​P​t+1​​)​ + ​​ n−1​ ′ ​  ​u​t+1​​​.

Thus, expected excess returns, adjusted for convexity, are

(B10)	​ ​E​t​​ r ​x​ t+1​ 
​(n)​ ​ + ​ 1 _ 

2
 ​ ​var​t​​ r ​x​ t+1​ 

​(n)​ ​  = ​ ​ n−1​ ′ ​​ [​λ​0​​ + ​(​I​N​​ − Φ)​γ ​τ​t​​ + ​(Φ − ​Φ​​ ​)​​P​t​​]​​

(B11)	​ = ​ ​ n−1​ ′ ​ ​[​λ​0​​ + ​(Φ − ​Φ​​ ​)​​P – ​

	 + ​(​I​N​​ − ​Φ​​ ​)​γ ​τ​t​​ + ​(Φ − ​Φ​​ ​)​​​P ̃ ​​t​​]​​.

Equation (B10) shows that when holding the yield factors ​​P​t​​​ constant, the load-
ings on ​​τ​t​​​ are ​​​ n−1​ ′ ​  (​I​N​​ − Φ)γ​, and our model estimates imply substantially nega-
tive values for these loadings, across all ​n​, in line with the regression estimates in 
Section IIB. Conditional on current yields, an increase in the trend implies lower 
expected returns. Equation (B11) shows the separate roles of trends and cycles 
for bond risk premia. If we hold the yield cycles ​​​P ̃ ​​t​​​ constant, the loadings on ​​τ​t​​​ 
are ​​​ n−1​ ′ ​  (​I​N​​ − ​Φ​​ ​ )γ​. These loadings tend to be an order of magnitude smaller (in 
absolute value) than the loadings on ​​τ​t​​​ in equation (B10), consistent with the findings 
in Section IIB that predictive regressions with only detrended yields capture most 
of the predictability of excess bond returns. The loadings on ​​τ​t​​​ in (B11) are positive 
because risk premia are positively related to movements in the trend. Unreported 
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results show that predictive regressions with both detrended yields and trend proxies 
lead to coefficients on the trend that are insignificantly different from both zero and 
the model-based loadings, consistent with the implications of our model.

A term premium is the difference between a long-term interest rate and an expec-
tations component of the same maturity. For simplicity, the expectations component 
is often specified as the average of expected future short rates, as in equation (1). In 
a no-arbitrage term structure model, it is advantageous to instead use “risk-neutral 
rates” which, like yields, account for the convexity of bond prices. Specifically, the 
risk-neutral yield on an ​n​-period bond is

	​ ​​y ̃ ​​ t​ 
​(n)​​  =  −log ​E​t​​ exp​(−​ ∑ 

j=0
​ 

n−1

​​ ​i​t+j​​)​/n​,

which differs from the average expected future short rate ​​∑ j=0​ n−1 ​​ ​E​t​​ ​i​t+j​​/n​ by a Jensen’s 
inequality term that is constant in a homoskedastic model like ours. The risk-neutral 
yields are affine in ​​Z​t​​​, and the loadings are calculated using recursions similar to 
those in equations (B6)–(B7), with ​​μ​Z​​​ and ​​Φ​Z​​​ replacing ​​μ​​ ​​ and ​​Φ​​ ​​, ​​Ω​v​​​ replacing ​
Ω​, and the ​N + 1​ vector ​(0, ​δ​ 1​ ′ ​ )′​ replacing ​​δ​1​​​. Crucially, risk-neutral yields depend 
on both ​​τ​t​​​ and ​​P​t​​​, since ​​τ​t​​​ affects real-world expectations of future short rates. The 
term premium on an ​n​-period bond is then defined as

	​ T ​P​ t​ 
​(n)​​  = ​ y​ t​ 

​(n)​​ − ​​y ̃ ​​ t​ 
​(n)​​​.

Because the real-world dynamics feature a unit root, risk-neutral rates diverge to 
minus infinity (and the term premium to infinity) as maturity increases. This issue is 
neither of theoretical nor practical concern: First, no tradable securities have payoffs 
tied to these quantities. Second, at the maturities we focus on, due to the high per-
sistence of the risk-neutral dynamics, the convexity in actual and risk-neutral yields 
is quite similar, and estimates of the term premium are not noticeably affected by 
convexity.

Risk-neutral forward rates are

(B12)	​ ​​f ̃ ​​ t​ 
 ​(n)​​  =  − ​ 1 _ 

2
 ​ ​​ ̃ ​​ n​ ′ ​ ​Ω​v​​ ​​ ̃ ​​n​​ + ​τ​t​​ + ​δ​ 1​ ′ ​ ​Φ​​ n​ ​​P ̃ ​​t​​​,

where ​​​ ̃ ​​n​​​ is the loading of the log risk-neutral bond price with maturity ​n​ on ​​Z​t​​​. 
The intuition for equation (B12) is that ​​​f ̃ ​​ t​  (n)​  = ​ E​t​​ ​i​t+n​​ + convexity​, and short-rate 
expectations move one-for-one with the trend. Equations (B8) and (B12) imply that 
the forward term premium ​ft​p​ t​ (n)​  = ​ f​ t​   (n)​ − ​​f ̃ ​​ t​  (n)​​ is

(B13)	​ ft​p​ t​ 
​(n)​​  =  constant + ​δ​ 1​ ′ ​​[​​(​Φ​​ ​)​​​ n​ − ​I​N​​]​γ​τ​t​​ + ​δ​ 1​ ′ ​​[​​(​Φ​​ ​)​​​ n​ − ​Φ​​ n​]​​​P ̃ ​​t​​​.

The loadings on ​​τ​t​​​ have a limit of −1 as ​n​ tends to infinity. The limiting-maturity 
forward rate is constant, as the limiting-maturity forward term premium exactly 
offsets movements in the limiting-maturity risk-neutral rate. However, for maturities 
relevant in the real world, forward rates and yields have loadings on ​​τ​t​​​ greater than 
1 and positive term premium loadings, consistent with the cointegration regressions 
reported in Section IIA.
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