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Summary The Svensson generalization of the popular Nelson–Siegel term structure model
is widely used by practitioners and central banks. Unfortunately, like the original Nelson–
Siegel specification, this generalization, in its dynamic form, does not enforce arbitrage-free
consistency over time. Indeed, we show that the factor loadings of the Svensson generalization
cannot be obtained in a standard finance arbitrage-free affine term structure representation.
Therefore, we introduce a closely related generalized Nelson–Siegel model on which the no-
arbitrage condition can be imposed. We estimate this new AFGNS model and demonstrate its
tractability and good in-sample fit.
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1. INTRODUCTION

To investigate yield-curve dynamics, researchers have produced a vast literature with a wide
variety of models. Many of these models assume that at observed bond prices there are
no remaining unexploited opportunities for riskless arbitrage. This theoretical assumption is
consistent with the observation that bonds of various maturities all trade simultaneously in deep
and liquid markets. Rational traders in such markets should enforce a consistency in the yields of
various bonds across different maturities—the yield curve at any point in time—and the expected
path of those yields over time—the dynamic evolution of the yield curve. Indeed, the assumption
that there are no remaining arbitrage opportunities is central to the enormous finance literature
devoted to the empirical analysis of bond pricing. Unfortunately, as noted by Duffee (2002),
the associated arbitrage-free (AF) models can demonstrate disappointing empirical performance,
especially with regard to out-of-sample forecasting. In addition, the estimation of these models
is problematic, in large part because of the existence of numerous model likelihood maxima that
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have essentially identical fit to the data but very different implications for economic behavior
(Kim and Orphanides, 2005).1

In contrast to the popular finance AF models, many other researchers have employed
representations that are empirically appealing but not well grounded in theory. Most notably, the
Nelson and Siegel (1987) curve provides a remarkably good fit to the cross section of yields in
many countries and has become a widely used specification among financial market practitioners
and central banks. Moreover, Diebold and Li (2006) develop a dynamic model based on this
curve and show that it corresponds exactly to a modern factor model, with yields that are affine
in three latent factors, which have a standard interpretation of level, slope and curvature. Such
a dynamic Nelson–Siegel (DNS) model is easy to estimate and forecasts the yield curve quite
well. Despite its good empirical performance, however, the DNS model does not impose the
presumably desirable theoretical restriction of absence of arbitrage (e.g. Filipović, 1999, and
Diebold et al., 2005).

In Christensen et al. (2007), henceforth CDR, we show how to reconcile the Nelson–Siegel
model with the absence of arbitrage by deriving an affine AF model that maintains the Nelson–
Siegel factor loading structure for the yield curve. This arbitrage-free Nelson–Siegel (AFNS)
model combines the best of both yield-curve modeling traditions. Although it maintains the
theoretical restrictions of the affine AF modeling tradition, the Nelson–Siegel structure helps
identify the latent yield-curve factors, so the AFNS model can be easily and robustly estimated.
Furthermore, our results show that the AFNS model exhibits superior empirical forecasting
performance.

In this paper, we consider some important generalizations of the Nelson–Siegel yield curve
that are also widely used in central banks and industry (e.g. De Pooter, 2007).2 Foremost among
these is the Svensson (1995) extension to the Nelson–Siegel curve, which is used at the Federal
Reserve Board (see Gürkaynak et al., 2007, 2008), the European Central Bank (see Coroneo
et al., 2008) and many other central banks (see Söderlind and Svensson, 1997, and Bank for
International Settlements, 2005). The Svensson extension adds a second curvature term, which
allows for a better fit at long maturities. Following Diebold and Li (2006), we first introduce a
dynamic version of this model, which corresponds to a modern four-factor term structure model.
Unfortunately, we show that it is not possible to obtain an arbitrage-free ‘approximation’ to
this model in the sense of obtaining analytically identical factor loadings for the four factors.
Intuitively, such an approximation requires that each curvature factor must be paired with a slope
factor that has the same mean-reversion rate. This pairing is simply not possible for the Svensson
extension, which has one slope factor and two curvature factors. Therefore, to obtain an arbitrage-
free generalization of the Nelson–Siegel curve, we add a second slope factor to pair with the
second curvature factor. The simple dynamic version of this model is a generalized version of
the DNS model. We also show that the result in CDR can be extended to obtain an arbitrage-
free approximation to that five-factor model, which we refer to as the arbitrage-free generalized
Nelson–Siegel (AFGNS) model.

Finally, we show that this new AFGNS model of the yield curve not only displays theoretical
consistency but also retains the important properties of empirical tractability and fit. We estimate

1 A further failing is that the affine AF finance models offer little insight into the economic nature of the underlying
forces that drive movements in interest rates. This issue has been addressed by a burgeoning macro-finance literature,
which is described in Rudebsuch and Wu (2007, 2008).

2 Alternative flexible parameterizations of the yield curve include the use of Legendre polynomials (as in Almeida and
Vicente, 2008) and natural cubic splines (as in Bowsher and Meeks, 2008).
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the independent-factor versions of the four-factor and five-factor non-AF models and the
independent-factor version of the five-factor arbitrage-free AFGNS model. We compare the
results to those obtained by CDR for the DNS and AFNS models and find good in-sample fit
for the AFGNS model.

The remainder of the paper is structured as follows. Section 2 briefly describes the DNS
model and its arbitrage-free equivalent as derived in CDR. Section 3 contains the description of
the AFGNS model. Section 4 describes the five specific models that we analyze, while Section 5
describes the data, estimation method and estimation results. Section 6 concludes the paper, and
an Appendix contains some additional technical details.

2. NELSON–SIEGEL TERM STRUCTURE MODELS

In this section, we review the DNS and AFNS models that maintain the Nelson–Siegel factor
loading structure.

2.1. The dynamic Nelson–Siegel model

The Nelson–Siegel curve fits the term structure of interest rates at any point in time with the
simple functional form

y(τ ) = β0 + β1

(
1 − e−λτ

λτ

)
+ β2

(
1 − e−λτ

λτ
− e−λτ

)
, (2.1)

where y(τ ) is the zero-coupon yield with τ denoting the time to maturity, and β 0, β 1, β 2 and λ

are model parameters.3

As many have noted, this representation is able to provide a good fit to the cross section
of yields at a given point in time, and this is a key reason for its popularity with financial
market practitioners. Still, to understand the evolution of the bond market over time, a dynamic
representation is required. Diebold and Li (2006) supply such a model by replacing the
parameters with time-varying factors

yt (τ ) = Lt + St

(
1 − e−λτ

λτ

)
+ Ct

(
1 − e−λτ

λτ
− e−λτ

)
. (2.2)

Given their associated Nelson–Siegel factor loadings, Diebold and Li show that Lt , St and Ct

can be interpreted as level, slope and curvature factors. Furthermore, once the model is viewed as
a factor model, a dynamic structure can be postulated for the three factors, which yields a DNS
model.

Despite its good empirical performance, however, the DNS model does not impose absence
of arbitrage (e.g. Filipović, 1999, and Diebold et al., 2005). This problem was solved in CDR,
where we derived the affine arbitrage-free class of DNS term structure models, referred to as the
AFNS model in the remainder of this paper.

3 This is equation (2) in Nelson and Siegel (1987).
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2.2. The arbitrage-free Nelson–Siegel model

The derivation in CDR of the class of AFNS models starts from the standard continuous-time
affine arbitrage-free term structure model. In this framework, we consider a three-factor model
with a constant volatility matrix, i.e. in the terminology of the canonical characterization of affine
term structure models provided by Dai and Singleton (2000), we start with the A0(3) class of term
structure models. Within the A0(3) class, CDR prove the following proposition.

PROPOSITION 2.1. Assume that the instantaneous risk-free rate is defined by

rt = X1
t + X2

t .

In addition, assume that the state variables Xt = (X1
t , X2

t , X3
t ) are described by the following

system of stochastic differential equations (SDEs) under the risk-neutral Q-measure:⎛⎜⎝dX1
t

dX2
t

dX3
t

⎞⎟⎠ =

⎛⎜⎝ 0 0 0

0 λ −λ

0 0 λ

⎞⎟⎠
⎡⎢⎣

⎛⎜⎝θ
Q

1

θ
Q

2

θ
Q

3

⎞⎟⎠ −

⎛⎜⎝X1
t

X2
t

X3
t

⎞⎟⎠
⎤⎥⎦ dt + �

⎛⎜⎝dW
1,Q
t

dW
2,Q
t

dW
3,Q
t

⎞⎟⎠ , λ > 0.

Then, zero-coupon bond prices are given by

P (t, T ) = E
Q
t

[
exp

(
−

∫ T

t

rudu

)]
= exp

(
B1(t, T )X1

t + B2(t, T )X2
t + B3(t, T )X3

t + C(t, T )
)
,

where B1(t , T ), B2(t , T ), B3(t , T ) and C(t , T ) are the unique solutions to the following system
of ordinary differential equations (ODEs):⎛⎜⎜⎝

dB1(t,T )
dt

dB2(t,T )
dt

dB3(t,T )
dt

⎞⎟⎟⎠ =

⎛⎜⎝1

1

0

⎞⎟⎠ +

⎛⎜⎝ 0 0 0

0 λ 0

0 −λ λ

⎞⎟⎠
⎛⎜⎝B1(t, T )

B2(t, T )

B3(t, T )

⎞⎟⎠ (2.3)

and

dC(t, T )

dt
= −B(t, T )′KQθQ − 1

2

3∑
j=1

(
�′B(t, T )B(t, T )′�

)
j,j

, (2.4)

with boundary conditions B1(T , T ) = B2(T , T ) = B3(T , T ) = C(T , T ) = 0. The unique solution
for this system of ODEs is:

B1(t, T ) = −(T − t),

B2(t, T ) = −1 − e−λ(T −t)

λ
,

B3(t, T ) = (T − t)e−λ(T −t) − 1 − e−λ(T −t)

λ
,
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and

C(t, T ) = (KQθQ)2

∫ T

t

B2(s, T )ds + (KQθQ)3

∫ T

t

B3(s, T )ds

+1

2

3∑
j=1

∫ T

t

(
�′B(s, T )B(s, T )′�

)
j,j

ds.

Finally, zero-coupon bond yields are given by

y(t, T ) = X1
t + 1 − e−λ(T −t)

λ(T − t)
X2

t +
[

1 − e−λ(T −t)

λ(T − t)
− e−λ(T −t)

]
X3

t − C(t, T )

T − t
.

For proof see CDR.
This proposition defines the class of AFNS models. In this class of models, the factor loadings

exactly match the Nelson–Siegel ones, but there is an unavoidable additional term in the yield
function, −C(t,T )

T −t
, which depends only on the maturity of the bond. This ‘yield-adjustment’ term

is a crucial difference between the AFNS and DNS models and has the following form:4

−C(t, T )

T − t
= −1

2

1

T − t

3∑
j=1

∫ T

t

(
�′B(s, T )B(s, T )′�

)
j,j

ds.

Given a general volatility matrix

� =

⎛⎜⎝σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

⎞⎟⎠ ,

the yield-adjustment term can be derived in analytical form as

C(t, T )

T − t
= 1

2

1

T − t

∫ T

t

3∑
j=1

(
�′B(s, T )B(s, T )′�

)
j,j

ds

= A
(T − t)2

6
+ B

[
1

2λ2
− 1

λ3

1 − e−λ(T −t)

T − t
+ 1

4λ3

1 − e−2λ(T −t)

T − t

]
+ C

[
1

2λ2
+ 1

λ2
e−λ(T −t) − 1

4λ
(T − t)e−2λ(T −t) − 3

4λ2
e−2λ(T −t)

− 2

λ3

1 − e−λ(T −t)

T − t
+ 5

8λ3

1 − e−2λ(T −t)

T − t

]
+ D

[
1

2λ
(T − t) + 1

λ2
e−λ(T −t) − 1

λ3

1 − e−λ(T −t)

T − t

]

4 As explained in CDR, this form of the yield-adjustment term is obtained by fixing the mean parameters of the state
variables under the Q-measure at zero, i.e. θQ = 0, which implies no loss of generality.
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+ E

[
3

λ2
e−λ(T −t) + 1

2λ
(T − t) + 1

λ
(T − t)e−λ(T −t) − 3

λ3

1 − e−λ(T −t)

T − t

]
+ F

[
1

λ2
+ 1

λ2
e−λ(T −t) − 1

2λ2
e−2λ(T −t) − 3

λ3

1 − e−λ(T −t)

T − t

+ 3

4λ3

1 − e−2λ(T −t)

T − t

]
,

where

• A = σ 2
11 + σ 2

12 + σ 2
13,

• B = σ 2
21 + σ 2

22 + σ 2
23,

• C = σ 2
31 + σ 2

32 + σ 2
33,

• D = σ11σ21 + σ12σ22 + σ13σ23,
• E = σ11σ31 + σ12σ32 + σ13σ33,
• F = σ21σ31 + σ22σ32 + σ23σ33.

This result has two implications. First, the fact that zero-coupon bond yields in the AFNS
class of models are given by an analytical formula greatly facilitates empirical implementation
of these models. Second, the nine underlying volatility parameters are not identified. Indeed,
only the six terms A, B, C, D, E and F can be identified; thus, the maximally flexible AFNS
specification that can be identified has a triangular volatility matrix given by5

� =

⎛⎜⎝σ11 0 0

σ21 σ22 0

σ31 σ32 σ33

⎞⎟⎠ .

3. EXTENSIONS OF THE NELSON–SIEGEL MODEL

The main in-sample problem with the regular Nelson–Siegel yield curve is that, for reasonable
choices of λ (which are empirically in the range from 0.5 to 1 for U.S. Treasury yield data),
the factor loading for the slope and the curvature factor decay rapidly to zero as a function of
maturity. Thus, only the level factor is available to fit yields with maturities of ten years or
longer. In empirical estimation, this limitation shows up as a lack of fit of the long-term yields,
as described in CDR.

To address this problem in fitting the cross section of yields, Svensson (1995) introduced an
extended version of the Nelson–Siegel yield curve with an additional curvature factor,

y(τ ) = β1 + β2

(
1 − e−λ1τ

λ1τ

)
+ β3

(
1 − e−λ1τ

λ1τ
− e−λ1τ

)
+ β4

(
1 − e−λ2τ

λ2τ
− e−λ2τ

)
.

Just as Diebold and Li (2006) replaced the three β coefficients with dynamic factors in the regular
Nelson–Siegel model, we can replace the four β coefficients in the Svensson model with dynamic

5 The choice of upper or lower triangular is irrelevant for the fit of the model.
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(a) Factor loadings in the DNSS model.
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(b) Factor loadings in the DGNS model.

Figure 1. Factor loadings in the yield functions of the DNSS and DGNS models.

processes (Lt , St , C1
t , C2

t ) interpreted as a level, a slope and two curvature factors, respectively.
Thus, the dynamic factor model representation of the Svensson yield curve, which we label the
DNSS model, is given by

yt (τ ) = Lt + St

(
1 − e−λ1τ

λ1τ

)
+ C1

t

(
1 − e−λ1τ

λ1τ
− e−λ1τ

)
+ C2

t

(
1 − e−λ2τ

λ2τ
− e−λ2τ

)
,

along with the processes describing factor dynamics. The factor loadings of the four state
variables in the yield function of the DNSS model are illustrated in Figure 1(a) with λ1 and λ2 set
equal to our estimates described in Section 5. The left-hand figure shows the factor loadings of
the four state variables in the yield function of the DNSS model with λ1 and λ2 equal to 0.8379
and 0.09653, respectively.

The critique raised by Filipović (1999) against the dynamic version of the Nelson–Siegel
model also applies to the dynamic version of the Svensson model introduced in this paper. Thus,
this model is not consistent with the concept of absence of arbitrage. Ideally, we would like
to repeat the work in CDR and derive an arbitrage-free approximation to the DNSS model.
However, from the mechanics of Proposition 2.1 for the arbitrage-free approximation of the
regular Nelson–Siegel model, it is clear that we can only obtain the Nelson–Siegel factor loading
structure for the slope and curvature factors under two specific conditions. First, each pair of
slope and curvature factors must have identical own mean-reversion rates. Second, the impact
of deviations in the curvature factor from its mean on the slope factor must be scaled with a
factor equal to that own mean-reversion rate (λ). Thus, it is impossible in an arbitrage-free model
to generate the factor loading structure of two curvature factors with only one slope factor.
Consequently, it is impossible to create an arbitrage-free version of the Svensson extension to
the Nelson–Siegel model that has factor loadings analytically identical to the ones in the DNSS
model.

However, this discussion suggests that we can create a generalized AF Nelson–Siegel model
by including a fifth factor in the form of a second slope factor. The yield function of this model
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takes the form

yt (τ ) = Lt + S1
t

(
1 − e−λ1τ

λ1τ

)
+ S2

t

(
1 − e−λ2τ

λ2τ

)
+ C1

t

(
1 − e−λ1τ

λ1τ
− e−λ1τ

)
+ C2

t

(
1 − e−λ2τ

λ2τ
− e−λ2τ

)
.

This dynamic generalized Nelson–Siegel model, which we denote as the DGNS model, is a five-
factor model with one level factor, two slope factors and two curvature factors. (Note that we
impose the restriction that λ1 > λ2, which is non-binding due to symmetry.6) The factor loadings
of the five state variables in the yield function of the DGNS model are illustrated in Figure 1(b)
with λ1 and λ2 set equal to our estimates in Section 5. The right-hand figure shows the factor
loadings of the five state variables in the yield function of the DGNS model with λ1 and λ2 equal
to 1.190 and 0.1021, respectively. These λi values equal the estimated values obtained below,
and they require maturity to be measured in years.

A straightforward extension of Proposition 2.1 delivers the arbitrage-free approximation of
this model, which we denote as the AFGNS model.

PROPOSITION 3.1. Assume that the instantaneous risk-free rate is defined by

rt = X1
t + X2

t + X3
t .

In addition, assume that the state variables Xt = (X1
t , X2

t , X3
t , X4

t , X5
t ) are described by the

following system of SDEs under the risk-neutral Q-measure:

⎛⎜⎜⎜⎜⎜⎜⎝
dX1

t

dX2
t

dX3
t

dX4
t

dX5
t

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 0

0 λ1 0 −λ1 0

0 0 λ2 0 −λ2

0 0 0 λ1 0

0 0 0 0 λ2

⎞⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎜⎝

θ
Q

1

θ
Q

2

θ
Q

3

θ
Q

4

θ
Q

5

⎞⎟⎟⎟⎟⎟⎟⎟⎠
−

⎛⎜⎜⎜⎜⎜⎜⎝
X1

t

X2
t

X3
t

X4
t

X5
t

⎞⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎦
dt + �

⎛⎜⎜⎜⎜⎜⎜⎜⎝

dW
1,Q
t

dW
2,Q
t

dW
3,Q
t

dW
4,Q
t

dW
5,Q
t

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where λ1 > λ2 > 0.
Then, zero-coupon bond prices are given by

P (t, T ) = E
Q
t

[
exp

(
−

∫ T

t

rudu

)]
= exp

(
B1(t, T )X1

t + B2(t, T )X2
t + B3(t, T )X3

t

+ B4(t, T )X4
t + B5(t, T )X5

t + C(t, T )
)
,

6 Björk and Christensen (1999) introduce a related extension of the Nelson–Siegel model with one level factor, two
slope factors and a single curvature factor with the restriction that λ1 = 2λ2.
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where B1(t , T ), B2(t , T ), B3(t , T ), B4(t , T ), B5(t , T ) and C(t , T ) are the unique solutions to the
following system of ODEs:⎛⎜⎜⎜⎜⎜⎜⎜⎝

dB1(t,T )
dt

dB2(t,T )
dt

dB3(t,T )
dt

dB4(t,T )
dt

dB5(t,T )
dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎝
1

1

1

0

0

⎞⎟⎟⎟⎟⎟⎟⎠ +

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 λ1 0 0 0

0 0 λ2 0 0

0 −λ1 0 λ1 0

0 0 −λ2 0 λ2

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
B1(t, T )

B2(t, T )

B3(t, T )

B4(t, T )

B5(t, T )

⎞⎟⎟⎟⎟⎟⎟⎠ (3.1)

and

dC(t, T )

dt
= −B(t, T )′KQθQ − 1

2

5∑
j=1

(
�′B(t, T )B(t, T )′�

)
j,j

, (3.2)

with boundary conditions B1(T , T ) = B2(T , T ) = B3(T , T ) = B4(T , T ) = B5(T , T ) =
C(T , T ) = 0. The unique solution for this system of ODEs is:

B1(t, T ) = −(T − t),

B2(t, T ) = −1 − e−λ1(T −t)

λ1
,

B3(t, T ) = −1 − e−λ2(T −t)

λ2
,

B4(t, T ) = (T − t)e−λ1(T −t) − 1 − e−λ1(T −t)

λ1
,

B5(t, T ) = (T − t)e−λ2(T −t) − 1 − e−λ2(T −t)

λ2
,

and

C(t, T ) = (KQθQ)2

∫ T

t

B2(s, T )ds + (KQθQ)3

∫ T

t

B3(s, T )ds + (KQθQ)4

∫ T

t

B4(s, T )ds

+ (KQθQ)5

∫ T

t

B5(s, T )ds + 1

2

5∑
j=1

∫ T

t

(
�′B(s, T )B(s, T )′�

)
j,j

ds.

Finally, zero-coupon bond yields are given by

y(t, T ) = X1
t + 1 − e−λ1(T −t)

λ1(T − t)
X2

t + 1 − e−λ2(T −t)

λ2(T − t)
X3

t +
[

1 − e−λ1(T −t)

λ1(T − t)
− e−λ1(T −t)

]
X4

t

+
[

1 − e−λ2(T −t)

λ2(T − t)
− e−λ2(T −t)

]
X5

t − C(t, T )

T − t
.

The proof is a straightforward extension of CDR.
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Similar to the AFNS class of models, the yield-adjustment term will have the following
form:7

−C(t, T )

T − t
= −1

2

1

T − t

5∑
j=1

∫ T

t

(
�′B(s, T )B(s, T )′�

)
j,j

ds.

Following arguments similar to the ones provided for the AFNS class of models in the
previous section, the maximally flexible specification of the volatility matrix that can be identified
in estimation is given by a triangular matrix

� =

⎛⎜⎜⎜⎜⎜⎜⎝
σ11 0 0 0 0

σ21 σ22 0 0 0

σ31 σ32 σ33 0 0

σ41 σ42 σ43 σ44 0

σ51 σ52 σ53 σ54 σ55

⎞⎟⎟⎟⎟⎟⎟⎠ .

4. FIVE SPECIFIC NELSON–SIEGEL MODELS

In general, all the models considered in this paper are silent about the P-dynamics, and an infinite
number of possible specifications could be used to match the data. However, for continuity with
the existing literature, our econometric analysis focuses on independent-factor versions of the
five different models we have described. These models include the DNS and AFNS models from
CDR and the generalized DNSS, DGNS and AFGNS models introduced in Section 3.

In the independent-factor DNS model, all three state variables are assumed to be independent
first-order autoregressions, as in Diebold and Li (2006). Using their notation, the state equation
is given by ⎛⎜⎝Lt − μL

St − μS

Ct − μC

⎞⎟⎠ =

⎛⎜⎝ a11 0 0

0 a22 0

0 0 a33

⎞⎟⎠
⎛⎜⎝Lt−1 − μL

St−1 − μS

Ct−1 − μC

⎞⎟⎠ +

⎛⎜⎝ηt (L)

ηt (S)

ηt (C)

⎞⎟⎠ ,

where the error terms ηt (L), ηt (S) and ηt (C) have a conditional covariance matrix given by

Q =

⎛⎜⎝q2
11 0 0

0 q2
22 0

0 0 q2
33

⎞⎟⎠ .

7 The analytical formula for the yield-adjustment term in the AFGNS model is provided in the Appendix. As was the
case for Proposition 2.1, Proposition 3.1 is also silent about the P-dynamics of the state variables, so to identify the
model, we follow CDR and fix the mean under the Q-measure at zero, i.e. θQ = 0.
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In this model, the measurement equation takes the form⎛⎜⎜⎜⎜⎝
yt (τ1)

yt (τ2)
...

yt (τN )

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 1−e−λτ1

λτ1

1−e−λτ1

λτ1
− e−λτ1

1 1−e−λτ2

λτ2

1−e−λτ2

λτ2
− e−λτ2

...
...

...

1 1−e−λτN

λτN

1−e−λτN

λτN
− e−λτN

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎝Lt

St

Ct

⎞⎟⎠ +

⎛⎜⎜⎜⎜⎝
εt (τ1)

εt (τ2)
...

εt (τN )

⎞⎟⎟⎟⎟⎠ ,

where the measurement errors εt (τ i)are assumed to be independently and identically distributed
(i.i.d.) white noise.

The corresponding AFNS model is formulated in continuous time and the relationship
between the real-world dynamics under the P-measure and the risk-neutral dynamics under the
Q-measure is given by the measure change

dW
Q
t = dWP

t + 
tdt,

where 
t represents the risk premium specification. To preserve affine dynamics under the P-
measure, we limit our focus to essentially affine risk premium specifications (see Duffee, 2002).
Thus, 
t will take the form


t =

⎛⎜⎝γ 0
1

γ 0
2

γ 0
3

⎞⎟⎠ +

⎛⎜⎝γ 1
11 γ 1

12 γ 1
13

γ 1
21 γ 1

22 γ 1
23

γ 1
31 γ 1

32 γ 1
33

⎞⎟⎠
⎛⎜⎝X1

t

X2
t

X3
t

⎞⎟⎠ .

With this specification, the SDE for the state variables under the P-measure,

dXt = KP [θP − Xt ]dt + �dWP
t , (4.1)

remains affine. Due to the flexible specification of 
t , we are free to choose any mean vector θP

and mean-reversion matrix KP under the P-measure and still preserve the required Q-dynamic
structure described in Proposition 2.1. Therefore, we focus on the independent-factor AFNS
model, which corresponds to the specific DNS model from earlier in this section and assumes all
three factors are independent under the P-measure⎛⎜⎝dX1

t

dX2
t

dX3
t

⎞⎟⎠ =

⎛⎜⎝ κP
11 0 0

0 κP
22 0

0 0 κP
33

⎞⎟⎠
⎡⎢⎣

⎛⎜⎝θP
1

θP
2

θP
3

⎞⎟⎠ −

⎛⎜⎝X1
t

X2
t

X3
t

⎞⎟⎠
⎤⎥⎦ dt +

⎛⎜⎝σ1 0 0

0 σ2 0

0 0 σ3

⎞⎟⎠
⎛⎜⎜⎝

dW
1,P
t

dW
2,P
t

dW
3,P
t

⎞⎟⎟⎠ .

In this case, the measurement equation takes the form⎛⎜⎜⎜⎜⎜⎝
yt (τ1)

yt (τ2)

...

yt (τN )

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 1−e−λτ1

λτ1

1−e−λτ1

λτ1
− e−λτ1

1 1−e−λτ2

λτ2

1−e−λτ2

λτ2
− e−λτ2

...
...

...

1 1−e−λτN

λτN

1−e−λτN

λτN
− e−λτN

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎝X1

t

X2
t

X3
t

⎞⎟⎠ −

⎛⎜⎜⎜⎜⎜⎝
C(τ1)
τ 1

C(τ2)
τ 2

...
C(τN )
τN

⎞⎟⎟⎟⎟⎟⎠ +

⎛⎜⎜⎜⎜⎜⎝
εt (τ1)

εt (τ2)

...

εt (τN )

⎞⎟⎟⎟⎟⎟⎠ ,

where, again, the measurement errors εt (τ i) are assumed to be i.i.d. white noise.
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We now turn to the three generalized Nelson–Siegel models. In the independent-factor DNSS
model, all four state variables are assumed to be independent first-order autoregressions, as in
Diebold and Li (2006). Using their notation, the state equation is given by⎛⎜⎜⎜⎜⎝

Lt − μL

St − μS

C1
t − μC1

C2
t − μC2

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
a11 0 0 0

0 a22 0 0

0 0 a33 0

0 0 0 a44

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

Lt−1 − μL

St−1 − μS

C1
t−1 − μC1

C2
t−1 − μC2

⎞⎟⎟⎟⎟⎠ +

⎛⎜⎜⎜⎜⎝
ηt (L)

ηt (S)

ηt (C1)

ηt (C2)

⎞⎟⎟⎟⎟⎠ ,

where the error terms ηt (L), ηt (S), ηt (C1) and ηt (C2) have a conditional covariance matrix given
by

Q =

⎛⎜⎜⎜⎜⎝
q2

11 0 0 0

0 q2
22 0 0

0 0 q2
33 0

0 0 0 q2
44

⎞⎟⎟⎟⎟⎠ .

In the DNSS model, the measurement equation takes the form⎛⎜⎜⎜⎜⎜⎝
yt (τ1)

yt (τ2)

...

yt (τN )

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 1−e−λ1τ1

λ1τ1

1−e−λ1τ1

λ1τ1
− e−λ1τ1 1−e−λ2τ1

λ2τ1
− e−λ2τ1

1 1−e−λ1τ2

λ1τ2

1−e−λ1τ2

λ1τ2
− e−λ1τ2 1−e−λ2τ2

λ2τ2
− e−λ2τ2

...
...

...
...

1 1−e−λ1τN

λ1τN

1−e−λ1τN

λ1τN
− e−λ1τN 1−e−λ2τN

λ2τN
− e−λ2τN

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝
Lt

St

C1
t

C2
t

⎞⎟⎟⎟⎟⎠ +

⎛⎜⎜⎜⎜⎜⎝
εt (τ1)

εt (τ2)

...

εt (τN )

⎞⎟⎟⎟⎟⎟⎠ ,

where the measurement errors εt (τ i) are assumed to be i.i.d. white noise.
In the independent-factor DGNS model, all five state variables are assumed to be independent

first-order autoregressions, and the state equation is given by⎛⎜⎜⎜⎜⎜⎜⎝

Lt − μL

S1
t − μS1

S2
t − μS2

C1
t − μC1

C2
t − μC2

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a11 0 0 0 0

0 a22 0 0 0

0 0 a33 0 0

0 0 0 a44 0

0 0 0 0 a55

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

Lt−1 − μL

S1
t−1 − μS1

S2
t−1 − μS2

C1
t−1 − μC1

C2
t−1 − μC2

⎞⎟⎟⎟⎟⎟⎟⎠ +

⎛⎜⎜⎜⎜⎜⎜⎝

ηt (L)

ηt (S1)

ηt (S2)

ηt (C1)

ηt (C2)

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where the error terms ηt (L), ηt (S1), ηt (S2), ηt (C1) and ηt (C2) have a conditional covariance
matrix given by

Q =

⎛⎜⎜⎜⎜⎜⎜⎝

q2
11 0 0 0 0

0 q2
22 0 0 0

0 0 q2
33 0 0

0 0 0 q2
44 0

0 0 0 0 q2
55

⎞⎟⎟⎟⎟⎟⎟⎠ .
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In the DGNS model, the measurement equation takes the form⎛⎜⎜⎜⎜⎜⎝
yt (τ1)

yt (τ2)

...

yt (τN )

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 1−e−λ1τ1

λ1τ1

1−e−λ2τ1

λ2τ1

1−e−λ1τ1

λ1τ1
− e−λ1τ1 1−e−λ2τ1

λ2τ1
− e−λ2τ1

1 1−e−λ1τ2

λ1τ2

1−e−λ2τ2

λ2τ2

1−e−λ1τ2

λ1τ2
− e−λ1τ2 1−e−λ2τ2

λ2τ2
− e−λ2τ2

...
...

...
...

...

1 1−e−λ1τN

λ1τN

1−e−λ2τN

λ2τN

1−e−λ1τN

λ1τN
− e−λ1τN 1−e−λ2τN

λ2τN
− e−λ2τN

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

Lt

S1
t

S2
t

C1
t

C2
t

⎞⎟⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎜⎝
εt (τ1)

εt (τ2)

...

εt (τN )

⎞⎟⎟⎟⎟⎟⎠ ,

where the measurement errors εt (τ i) are assumed to be i.i.d. white noise.
Finally, as for the AFNS model, the AFGNS model is formulated in continuous time and the

relationship between the real-world dynamics under the P-measure and the risk-neutral dynamics
under the Q-measure is given by the measure change

dW
Q
t = dWP

t + 
tdt,

where 
t represents the risk premium specification. Again, to preserve affine dynamics under
the P-measure, we limit our focus to essentially affine risk premium specifications (see Duffee,
2002). Thus, 
t takes the form


t =

⎛⎜⎜⎜⎜⎜⎜⎝

γ 0
1

γ 0
2

γ 0
3

γ 0
4

γ 0
5

⎞⎟⎟⎟⎟⎟⎟⎠ +

⎛⎜⎜⎜⎜⎜⎜⎜⎝

γ 1
11 γ 1

12 γ 1
13 γ 1

14 γ 1
15

γ 1
21 γ 1

22 γ 1
23 γ 1

24 γ 1
25

γ 1
31 γ 1

32 γ 1
33 γ 1

34 γ 1
35

γ 1
41 γ 1

42 γ 1
43 γ 1

44 γ 1
45

γ 1
51 γ 1

52 γ 1
53 γ 1

54 γ 1
55

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

X1
t

X2
t

X3
t

X4
t

X5
t

⎞⎟⎟⎟⎟⎟⎟⎠ .

With this specification, the SDE for the state variables under the P-measure,

dXt = KP [θP − Xt ]dt + �dWP
t , (4.2)

remains affine. Due to the flexible specification of 
t , we are free to choose any mean vector
θP and mean-reversion matrix KP under the P-measure and still preserve the required structure
for the Q-dynamics described in Proposition 3.1. Therefore, we focus on the AFGNS model that
corresponds to the specific DGNS model we have described earlier. In this independent-factor
AFGNS model, all five factors are assumed to be independent under the P-measure⎛⎜⎜⎜⎜⎜⎜⎝

dX1
t

dX2
t

dX3
t

dX4
t

dX5
t

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝

κP
11 0 0 0 0

0 κP
22 0 0 0

0 0 κP
33 0 0

0 0 0 κP
44 0

0 0 0 0 κP
55

⎞⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎝

θP
1

θP
2

θP
3

θP
4

θP
5

⎞⎟⎟⎟⎟⎟⎟⎠ −

⎛⎜⎜⎜⎜⎜⎜⎝

X1
t

X2
t

X3
t

X4
t

X5
t

⎞⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎦ dt +

⎛⎜⎜⎜⎜⎜⎜⎝

σ1 0 0 0 0

0 σ2 0 0 0

0 0 σ3 0 0

0 0 0 σ4 0

0 0 0 0 σ5

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

dW
1,P
t

dW
2,P
t

dW
3,P
t

dW
4,P
t

dW
5,P
t

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.
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For the AFGNS model, the measurement equation takes the form⎛⎜⎜⎜⎜⎜⎝
yt (τ1)

yt (τ2)

...

yt (τN )

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 1−e−λ1τ1

λ1τ1

1−e−λ2τ1

λ2τ1

1−e−λ1τ1

λ1τ1
− e−λ1τ1 1−e−λ2τ1

λ2τ1
− e−λ2τ1

1 1−e−λ1τ2

λ1τ2

1−e−λ2τ2

λ2τ2

1−e−λ1τ2

λ1τ2
− e−λ1τ2 1−e−λ2τ2

λ2τ2
− e−λ2τ2

...
...

...
...

...

1 1−e−λ1τN

λ1τN

1−e−λ2τN

λ2τN

1−e−λ1τN

λ1τN
− e−λ1τN 1−e−λ2τN

λ2τN
− e−λ2τN

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

X1
t

X2
t

X3
t

X4
t

X5
t

⎞⎟⎟⎟⎟⎟⎟⎠

−

⎛⎜⎜⎜⎜⎜⎝
C(τ1)
τ 1

C(τ2)
τ 2

...
C(τN )
τN

⎞⎟⎟⎟⎟⎟⎠ +

⎛⎜⎜⎜⎜⎜⎝
εt (τ1)

εt (τ2)

...

εt (τN )

⎞⎟⎟⎟⎟⎟⎠ ,

where, again, the measurement errors εt (τ i) are assumed to be i.i.d. white noise.

5. ESTIMATION OF THE MODELS

In this section, we will first describe the interest rate data to be used and the estimation method.
Next, we examine estimation results and in-sample fit for the DNS, AFNS, DNSS, DGNS and
AFGNS models.

5.1. Data

Our data are monthly observations on U.S. Treasury security yields covering the period from
January 1987 to December 2002 (and also used in CDR). The data are end-of-month, unsmoothed
Fama-Bliss zero-coupon yields for 16 different maturities that range from three months to
30 years. Summary statistics of the yields are provided in Table 1, which lists the 16 maturities.
Figure 2 displays the time series for the 3-month, 2-year and 10-year yields.

5.2. Estimation method

All 16 maturities are used throughout. Since the five models are affine Gaussian, we estimate
them by maximizing the likelihood function in the standard Kalman filter algorithm which is an
efficient and consistent estimator in this setting (see Harvey, 1989). A separate advantage of the
Kalman filter is that it lets the data speak on which maturities are fitted the best by each model.
Thus, we avoid identifying the factors of the models by assuming a corresponding number of
yields are observed without error as is done, e.g. in Duffee (2002). This is important for our
analysis as we are comparing models with a varying number of factors and focus on the in-
sample fit of the entire yield curve.

For the DNS, DNSS and DGNS models, the state equation is

Xt = (I − A)μ + AXt−1 + ηt , ηt ∼ N (0,Q),
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Table 1. Summary statistics for U.S. Treasury Yields.

Maturity Mean St.dev. Skewness Kurtosis

3 0.0509 0.0174 −0.0598 2.8199

6 0.0522 0.0175 −0.1400 2.7892

9 0.0533 0.0176 −0.1681 2.7474

12 0.0548 0.0177 −0.1960 2.7663

18 0.0570 0.0173 −0.1951 2.7605

24 0.0581 0.0166 −0.1797 2.7415

36 0.0606 0.0155 −0.1160 2.6952

48 0.0626 0.0148 −0.0829 2.5919

60 0.0636 0.0144 −0.0196 2.4418

84 0.0660 0.0138 0.0465 2.2071

96 0.0670 0.0136 0.0610 2.1290

108 0.0674 0.0136 0.0638 2.0617

120 0.0674 0.0135 0.0618 1.9843

180 0.0716 0.0123 0.2130 1.8874

240 0.0725 0.0113 0.0760 1.7757

360 0.0677 0.0121 0.0589 1.7428

Note: The summary statistics for our sample of monthly observed unsmoothed Fama-Bliss zero-coupon Treasury bond
yields, which covers the period from January 1987 to December 2002.
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Figure 2. Time series of U.S. Treasury Yields. Illustration of the observed Treasury zero-coupon bond
yields covering the period from January 1987 to December 2002. The yields shown have 3-month, 2-year
and 10-year maturities.
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where Xt = (Lt , St , Ct ), Xt = (Lt , St , C1
t , C2

t ) and Xt = (Lt , S1
t , S2

t , C1
t , C2

t ), respectively,
while the measurement equation is given by

yt = BXt + εt .

Following Diebold et al. (2006), we start the algorithm at the unconditional mean and variance
of the state variables. This assumes the state variables are stationary, which is imposed with the
constraint that the eigenvalues of A are smaller than 1.

For the continuous-time AFNS and AFGNS models, the conditional mean vector and the
conditional covariance matrix are given by

EP [XT |Ft ] = (I − exp(−KP t))θP + exp(−KP t)Xt,

V P [XT |Ft ] =
∫ t

0
e−KP s��′e−(KP )′sds,

where t = T − t . By discretizing the continuous dynamics under the P-measure, we obtain the
state equation

Xi = (I − exp(−KP ti))θ
P + exp(−KP ti)Xi−1 + ηt ,

where t i = t i − t i−1 is the time between observations. The conditional covariance matrix for
the shock terms is given by

Q =
∫ ti

0
e−KP s��′e−(KP )′sds.

Stationarity of the system under the P-measure is imposed by restricting the real component of
each eigenvalue of KP to be positive. The Kalman filter for these models is also started at the
unconditional mean and covariance8

X̂0 = θP and �̂0 =
∫ ∞

0
e−KP s��′e−(KP )′sds.

Finally, the AFNS and AFGNS measurement equation is given by

yt = A + BXt + εt .

For all five models, the error structure is(
ηt

εt

)
∼ N

[(
0

0

)
,

(
Q 0

0 H

)]
,

where H is a diagonal matrix for the measurement errors of the 16 maturities used in estimation

H =

⎛⎜⎜⎝
σ 2(τ1) . . . 0

...
. . .

...

0 . . . σ 2(τ16)

⎞⎟⎟⎠ .

8 In the estimation,
∫ ∞

0 e−KP s��′e−(KP )′sds is approximated by
∫ 10

0 e−KP s��′e−(KP )′sds.
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Table 2. Estimated dynamic parameters in the DNSS model.

A Lt−1 St−1 C1
t−1 C2

t−1 μ q

Lt 0.9839 0 0 0 0.04907 0.001835

(0.0145) (0.0112) (0.000280)

St 0 0.9889 0 0 −0.006021 0.002728

(0.0126) (0.0208) (0.000216)

C1
t 0 0 0.9565 0 0.003424 0.007988

(0.0221) (0.0169) (0.000448)

C2
t 0 0 0 0.9864 0.06082 0.006355

(0.0146) (0.0422) (0.000682)

Note: This table reports the estimated A matrix and μ vector along with the estimated parameters of the Q
matrix in the independent-factor DNSS model for the sample period from January 1987 to December 2002. The
maximum log likelihood value is 16658.40. The estimated value of λ1 is 0.8379 (0.0117), while the estimated
value of λ2 is 0.09653 (0.0163). The numbers in parentheses are the estimated standard deviations of the parameter
estimates.

The linear least-squares optimality of the Kalman filter requires that the transition and
measurement errors be orthogonal to the initial state, i.e.

E[f0η
′
t ] = 0, E[f0ε

′
t ] = 0.

Finally, parameter standard deviations are calculated as

�(ψ̂) = 1

T

[
1

T

T∑
t=1

∂ log lt (ψ̂)

∂ψ

∂ log lt (ψ̂)

∂ψ

′]−1

,

where ψ̂ denotes the estimated model parameter set.

5.3. DNSS model estimation results

Table 2 presents the estimated mean-reversion matrix A and the estimated vector of mean
parameters μ, along with the estimated parameters of the conditional covariance matrix Q
obtained for the DNSS model. The results reveal that the slope factor is the most persistent
factor. Also, the relatively large standard deviations of the estimated mean parameters suggest
some difficulty in pinning down their value under the P-measure, which is likely related to the
fairly high persistence of the state variables (e.g. Kim and Orphanides, 2005). The λ1 parameter
is estimated at 0.838, which implies a factor loading for the first curvature factor that peaks
near the 2-year maturity. The estimated value of λ2 is 0.097, so the factor loading of the
second curvature factor reaches its maximum near the 19-year maturity. (These are illustrated
in Figure 1(a).) Clearly, the two curvature factors take on very different roles in the fit of the
model.

Volatility parameters across the various models are most easily compared by focusing on
the 1-month conditional covariance matrix that they generate. For the independent-factor DNSS
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Figure 3. Level, slope and first curvature factors in the DNSS model.

model, the estimated matrix is given by

QDNSS
indep = qq ′ =

⎛⎜⎜⎜⎜⎝
3.37 × 10−6 0 0 0

0 7.44 × 10−6 0 0

0 0 6.38 × 10−5 0

0 0 0 4.04 × 10−5

⎞⎟⎟⎟⎟⎠ . (5.1)

The level factor has the smallest volatility, and the two curvature factors are the most volatile,
similar to the CDR results for the DNS model.

In Figure 3, we compare the estimated level, slope and first curvature factors in the DNSS
model to the corresponding factors estimated by CDR for the independent-factor DNS model.
The correlations for these three factors across the two models are 0.553, 0.844 and 0.899,
respectively. Thus, only the level factor changes notably when the second curvature factor is
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Figure 4. Second curvature factor in the DNSS model.

added to the model. Intuitively, without the second curvature factor, only the level factor is able
to fit the long-term yields. However, the second curvature factor can fit yields with maturities in
the 10–30-year range, so when it is included, the level factor is allowed to fit other areas of the
yield curve.

Figure 4 shows the second curvature factor. The estimated path of the second curvature factor
from the independent-factor DNSS model is shown with the 10-year yield for comparison. The
purpose of this factor is to improve the fit of long-term yields, and there is a clear relationship
between it and the 10-year yield (with a correlation coefficient of 0.793). The second curvature
factor also inherits the downward trend observed in long-term yields over this sample period,
while the DNSS level factor starts to look more stationary.

Table 3 reports summary statistics for the fitted errors of all five models. With its additional
flexibility, the DNSS model does show some improvement in fit over the DNS model, especially
in the maturity range from 3 months to 8 years. There is also a slightly better DNSS model
fit with long-term yields, which is consistent with the second curvature factor operating at
long maturities. Figure 5 displays the fitted yield curves from the independent-factor DNS,
AFNS, DNSS, DGNS, and AFGNS models estimated over the full sample from January 1987
to December 2002 on four specific dates (June 30, 1989, November 30, 1995, August 31,
1998, September 29, 2000). Observed yields are indicated with plus signs on these same dates.
Figure 5 shows that at times the DNSS model still does not fit the long end of the yield curve
very well.9 Indeed, since the factor loading of the second curvature factor is practically flat in the
10–30-year maturity range, it can only provide a level difference between the shorter end of the
yield curve and the very long end of the curve, but it cannot fit deviations between the 10-, 15-,
20- and 30-year yields.

The fitted errors reported in Table 3 for the DNSS model can be compared loosely to the
errors reported by Gürkaynak et al. (2007), who use the Svensson yield curve to fit bond yields.
Importantly, they fit the curve separately for each business day with no regard for the time series

9 These four dates provide examples of the variety of yield curve shapes observed over this sample period and were
selected by De Pooter (2007).
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Table 3. Summary statistics of in-sample fit.

DNS AFNS DNSS DGNS AFGNS

indep.-factor indep.-factor indep.-factor indep.-factor indep.-factor
Mat.

in mos. Mean RMSE Mean RMSE Mean RMSE Mean RMSE Mean RMSE

3 −1.64 12.26 −2.85 18.54 2.53 10.65 2.36 9.07 0.03 9.52

6 −0.24 1.09 −1.19 7.12 0.01 0.60 −0.06 1.05 0.01 0.86

9 −0.54 7.13 −1.24 3.44 −2.73 6.82 −2.64 6.15 −1.58 5.94

12 4.04 11.19 3.58 9.60 0.53 8.16 0.77 6.84 1.99 7.62

18 7.22 10.76 7.15 10.44 3.19 5.87 3.60 5.56 4.12 6.11

24 1.18 5.83 1.37 5.94 −1.82 4.11 −1.44 3.61 −1.76 3.80

36 −0.07 1.51 0.31 1.98 0.07 2.68 0.03 2.57 −0.62 2.65

48 −0.67 3.92 −0.39 3.72 1.69 3.78 1.20 3.12 1.56 3.47

60 −5.33 7.13 −5.27 6.82 −2.32 5.24 −2.99 5.15 −1.56 4.71

84 −1.22 4.25 −1.50 4.29 −0.26 4.04 −0.36 3.73 0.65 3.92

96 1.31 2.10 1.02 2.11 0.47 0.85 0.99 1.80 0.31 0.77

108 0.03 2.94 −0.11 3.02 −2.67 4.49 −1.41 3.27 −4.56 6.08

120 −5.11 8.51 −4.96 8.23 −9.51 12.13 −7.46 9.73 −13.60 15.47

180 24.11 29.44 27.86 32.66 16.37 24.94 21.97 28.16 −0.04 12.03

240 25.61 34.99 35.95 42.61 23.12 34.62 30.72 36.43 1.51 6.67

360 −29.62 37.61 1.37 22.04 −8.65 24.45 −0.96 6.81 −2.65 24.62

Mean 1.19 11.29 3.82 11.41 1.25 9.59 2.77 8.32 −1.01 7.14

Median −0.16 7.13 0.10 6.97 0.04 5.56 −0.02 5.36 −0.01 6.01

Note: The means and the root mean squared errors for 16 different maturities. All numbers are measured in basis points.

behavior of the extracted factors, which show dramatic variation over time. Their estimation will
always produce a better fit on any given day than ours, but the fit of the DNSS model is quite
comparable to theirs over the maturity range from 6 months to 9 years.

5.4. DGNS model estimation results

Table 4 presents the estimated mean-reversion matrix A and the estimated vector of mean
parameters μ along with the estimated parameters of the conditional covariance matrix Q for the
independent-factor DGNS model. Relative to the independent-factor DNSS model reported in the
previous section, the level factor and the two curvature factors preserve their relatively high rate
of persistence after the inclusion of the second slope factor. However, for the two slope factors,
we see a significant change in the estimated mean-reversion rates after this addition. Overall,
though, all the factors have become less persistent than what we observed in the DNSS model.

For the estimated mean parameters we find little change after adding the second slope factor
to the model. If anything, it seems like the uncertainty about these parameters has declined
notably. This ties in well with the fact that the factors have become less persistent, which allows
the estimation to determine their means more precisely.
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(b) November 30, 1995.
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(c) August 31, 1998.
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(d) September 29, 2000.

Figure 5. Fitted yield curves for four specific dates.

For the independent-factor DGNS model, the estimated q-parameters translate into a 1-month
conditional covariance matrix given by

QDGNS
indep = qq ′ =

⎛⎜⎜⎜⎜⎜⎜⎝

3.99 × 10−6 0 0 0 0

0 1.86 × 10−5 0 0 0

0 0 1.20 × 10−5 0 0

0 0 0 3.37 × 10−5 0

0 0 0 0 2.73 × 10−5

⎞⎟⎟⎟⎟⎟⎟⎠ . (5.2)

This matrix shows that for the level factor and the two curvature factors the estimated volatilities
are now smaller than the ones reported in equation (5.1) for the DNSS model. In contrast, the
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Table 4. Estimated dynamic parameters in the DGNS model.

A Lt−1 S1
t−1 S2

t−1 C1
t−1 C2

t−1 μ q

Lt 0.9758 0 0 0 0 0.05140 0.001998

(0.0239) (0.0104) (0.000268)

S1
t 0 0.9235 0 0 0 −0.007039 0.004309

(0.0295) (0.00718) (0.000371)

S2
t 0 0 0.9306 0 0 0.0006993 0.003462

(0.0341) (0.00686) (0.000363)

C1
t 0 0 0 0.9543 0 −0.0006114 0.005807

(0.0223) (0.0109) (0.000405)

C2
t 0 0 0 0 0.9782 0.05536 0.005223

(0.0194) (0.0207) (0.000756)

Note: This table reports the estimated A matrix and μ vector along with the estimated parameters of the Q matrix in the
DGNS model with independent factors for the sample period from January 1987 to December 2002. The maximum log
likelihood value is 16816.08. The estimated value of λ1 is 1.190 (0.0350), while the estimated value of λ2 is 0.1021
(0.00863). The numbers in parentheses are the estimated standard deviations of the parameter estimates.

estimated volatilities of the two slope factors are notably higher than the one reported for the
single slope factor in the DNSS model.

The estimated values of λ1 and λ2, which are 1.19 and 0.102, respectively, are also of interest.
The estimated value of λ1 is higher than the estimate of 0.838 obtained for the DNSS model,
which implies that the factor loadings of the first slope and curvature factors decay to zero at a
more rapid pace. Thus, as illustrated in Figure 1(b), movements in these two factors will have a
limited impact on yields beyond the five-year maturity. However, that lack of influence is made
up for by the second slope factor. The low estimate of λ2 implies that this factor has a loading
that decays very slowly. Therefore, this factor can affect the important intermediate range of
maturities from 5 to 15 years of maturity.

In Figure 6, we compare the estimated level, first slope, and first curvature factors from
the Kalman filter estimation of the DGNS model with independent factors to the corresponding
factors obtained for the DNS model (from CDR) and the DNSS model (described earlier in
this section). For ease of comparison the estimated paths from the independent-factor DNS and
DNSS models have been included. In all three cases the data used are unsmoothed Fama-Bliss
yields covering the period from January 1987 to December 2002. The correlations of these three
factors across the DNS and DGNS models are 0.730, 0.804 and 0.793, respectively. For the DNS
and DNSS models, the correlations are 0.549, 0.821 and 0.949, respectively. Thus, while the
level factor is affected by the addition of a second curvature factor, as in the DNSS model, the
impact of a second slope factor, as in the DGNS model, is more limited. Also, the first slope and
curvature factors have very similar sample paths across all three models. Given the fairly large
estimated values of λ1 in all three models, the factor loadings of these two factors decay towards
zero relatively rapidly as a function of maturity, so their roles in fitting the shorter end of the
yield curve are well defined.

Figure 7 shows the estimated paths of the second slope and curvature factors of the
independent-factor DGNS model. The estimated path of the second curvature factor from the
independent-factor DNSS model has been included for comparison. There is a clear correlation
between the curvature factor and the ten-year yield, as in the DNSS model. The second slope
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Figure 6. Estimated paths of the level, first slope and first curvature factor in the DGNS model.

factor appears to be a stationary process with a fairly high rate of mean-reversion, but its intuition
is not obvious.

If we focus on the fit of the DGNS model in Table 3, we see fairly uniform improvement in
the fit in the maturity range from 3 months to 10 years and a dramatic improvement in the fit of
the 30-year yield. The improved fit for the long yield in the DGNS model relative to the DNSS
model reflects the presence of the second slope factor and is also visible in Figure 5 . However,
there is still no improvement for the 15- or 20-year yields, a deficiency that can perhaps be
alleviated by imposing the AF restrictions.

5.5. AFGNS model estimation results

Table 5 presents the estimated parameters for the mean-reversion matrix KP , the mean vector
θP , and the volatility matrix � for the AFGNS model with independent factors. To compare
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Figure 7. Second slope and second curvature factors in the DGNS model.

Table 5. Estimated dynamic parameters in the AFGNS model.

KP K ·,1 K ·,2 K ·,3 K ·,4 K ·,5 θP �

K 1,· 1.012 0 0 0 0 0.1165 0.01057

(0.716) (0.00651) (0.000262)

K 2,· 0 0.2685 0 0 0 −0.04551 0.01975

(0.497) (0.0493) (0.00255)

K 3,· 0 0 0.3812 0 0 −0.02912 0.01773

(0.603) (0.0322) (0.00225)

K 4,· 0 0 0 1.409 0 −0.02398 0.05049

(0.970) (0.0227) (0.00304)

K 5,· 0 0 0 0 0.8940 −0.09662 0.04304109

(0.927) (0.0338) (0.00305)

Note: This table reports the estimated KP matrix and θP mean vector along with the estimated parameters of the �

volatility matrix in the AFGNS model with independent factors for the sample period from January 1987 to December
2002. The maximum log likelihood value is 16982.52. λ1 is estimated at 1.005 (0.0246) and λ2 is estimated at 0.2343
(0.00922). The numbers in parentheses are the estimated standard deviations of the parameter estimates.

the estimated mean-reversion parameters in this model to the results reported for the previous
models, we calculate the 1-month conditional discrete-time mean-reversion matrix, which is
given by

exp

(
− 1

12
KP

)
=

⎛⎜⎜⎜⎜⎜⎜⎝

0.9191 0 0 0 0

0 0.9779 0 0 0

0 0 0.9687 0 0

0 0 0 0.8892 0

0 0 0 0 0.9282

⎞⎟⎟⎟⎟⎟⎟⎠ . (5.3)
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Compared to the estimated A matrix reported for the DGNS model in Table 4, this shows that
by imposing an absence of arbitrage on that model, the level and two curvature factors become
notably less persistent, while the two slope factors become more persistent.

Based on the estimated volatility parameters, the 1-month conditional covariance matrix in
the AFGNS model is given by

QAFGNS
indep =

∫ 1
12

0
e−KP s��′e−(KP )′sds

=

⎛⎜⎜⎜⎜⎜⎜⎝

8.52 × 10−6 0 0 0 0

0 0.0000317 0 0 0

0 0 0.0000253 0 0

0 0 0 0.000188 0

0 0 0 0 0.000143

⎞⎟⎟⎟⎟⎟⎟⎠ . (5.4)

Across the board, the volatility of each factor is notably higher in the AFGNS model than in the
corresponding non-AF DGNS model.

The estimated AFGNS values of λ1 and λ2 are 1.01 and 0.234, compared with the DGNS
values of 1.19 and 0.1016. The lower value of λ1 implies that the first slope and curvature factors
decay somewhat slower to zero than in the DGNS model, while the higher value of λ2 indicates
that the model is using the additional yield-adjustment term to get the level of the long-term
yields right, which eases the tension on the second curvature factor. This shows up as a much
larger estimate for λ2.

Figure 8 displays the estimated level, first slope, and first curvature factors in the independent-
factor AFGNS model with the estimated paths from the DNS, DNSS, and DGNS models for
comparison. The correlations for these three factors across the AFGNS and DGNS models are
0.692, 0.668 and 0.952, respectively. Thus, for the level and first slope factors, the imposition of
an absence of arbitrage leads to some changes.10

Figure 9 illustrates the estimated second slope and curvature factors for the independent-
factor AFGNS model and the effect of the increase in the estimated value of λ2. The
corresponding estimated paths from the DNSS and DGNS models are shown for comparison.
Figure 9(a) shows that there is a notable change in the path of the second slope factor in the
AFGNS model relative to the DGNS model, and the two paths show a correlation of only 0.046.
There is greater correlation between the AFGNS and DGNS second curvature factors (of 0.696),
as depicted in Figure 9(b).

Focusing on the fit of the AFGNS model in Table 3, it is clear that the AFGNS model provides
a more balanced fit across maturities than the DNSS model. Indeed, only the 30-year yield does
not really benefit from adding the second slope factor or the AF restrictions. There are also
benefits relative to the DGNS model, especially on the four specific dates studied in Figure 5
when the improvement in the fit of the 15- and 20-year yields obtained with the AFGNS model
is quite apparent. The increase in the maximum log likelihood value from 16816.08 to 16982.52
from the imposition of the AF restrictions also indicates that the overall fit of the model has been
improved notably.

10 Note that, with the inclusion of the yield-adjustment term in the yield function of the AFGNS model, the estimated
values of all five factors are rescaled relative to the estimated values obtained in the DGNS model (and reflected in the
mean parameter estimates as well).
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Figure 8. Level, first slope and first curvature factors in the AFGNS model.

The only difference between the DGNS and the AFGNS models is tied to the yield-
adjustment term, −C(τ )

τ
, which is a maturity-dependent function that appears in the yield function

as a result of the imposition of absence of arbitrage and is a consequence of convexity effects.
Figure 10 displays the AFNS yield-adjustment term from CDR (and its three subcomponents)
and the AFGNS yield-adjustment term (and its five subcomponents).11 These two yield
adjustments have similar shapes but a somewhat different scale. In the AFNS model, the yield-
adjustment term stays below 50 basis points even at the 30-year maturity, while in the AFGNS
model it reaches a full 3 percentage points at that same maturity. The AFGNS model uses the

11 As long as we only consider models with diagonal volatility matrices, the yield-adjustment term will be a negative,
monotonically decreasing function of maturity that will eventually converge to −∞ due to the level factor imposed in
the Nelson–Siegel model.
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Figure 9. Second slope and second curvature factors in the AFGNS model.
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(a) Yield-adjustment in the AFNS model.
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(b) Yield-adjustment in the AFGNS model.

Figure 10. Yield-adjustment term for the AFNS and AFGNS models.

large negative values of the yield adjustment at long maturities to generate the second hump of
the yield curve in order to deliver a reasonable fit to the 15–30-year yields.

6. CONCLUSION

The Nelson and Siegel (1987) curve and the associated dynamic DNS model of Diebold and Li
(2006) both have trouble fitting long-maturity yields (in large part because of convexity effects).
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In this paper, we solve that problem while simultaneously imposing an absence of arbitrage.
We argue that although the popular Svensson (1995) extension of the Nelson–Siegel curve may
improve long-maturity fit, there does not exist an arbitrage-free yield-curve model that matches
its factor loadings. However, we show that there is a natural five-factor generalization, which
adds a second slope factor to join the additional curvature factor in the Svesson extension,
that does achieve freedom from arbitrage. Finally, we show that the estimation of this new
AFGNS model is tractable and provides good fit to the yield curve. The empirical tractability is
especially important because, as noted in the introduction, it would be very difficult to estimate
the maximally flexible five-factor affine arbitrage-free term structure model.

Going forward, the AFGNS model may be a useful addition to the tool kit of central banks
and practitioners who now use the non-AF Svensson extension of the Nelson–Seigel yield
curve. Furthermore, we envision much future research that employs the underlying arbitrage-free
Nelson–Seigel structure. In particular, given its tractable estimation, the basic AFNS model can
be easily extended to incorporate other elements, such as stochastic volatility, inflation-indexed
bond yields, or interbank lending rates (Christensen et al., 2008a, b, c). These extensions would
be difficult to include in an estimated maximally flexible affine model but may help illuminate
various important issues.
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APPENDIX: YIELD-ADJUSTMENT TERM IN THE AFGNS MODEL

Given a general volatility matrix

� =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

σ11 σ12 σ13 σ14 σ15

σ21 σ22 σ23 σ24 σ25

σ31 σ32 σ33 σ34 σ35

σ41 σ42 σ43 σ44 σ45

σ51 σ52 σ53 σ54 σ55

⎞⎟⎟⎟⎟⎟⎟⎟⎠
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the analytical AFGNS yield-adjustment term, via calculations available from the authors, is

C(t, T )
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where

• A = σ 2
11 + σ 2

12 + σ 2
13 + σ 2

14 + σ 2
15,

• B = σ 2
21 + σ 2

22 + σ 2
23 + σ 2

24 + σ 2
25,

• C = σ 2
31 + σ 2

32 + σ 2
33 + σ 2

34 + σ 2
35,

• D = σ 2
41 + σ 2

42 + σ 2
43 + σ 2

44 + σ 2
45,

• E = σ 2
51 + σ 2

52 + σ 2
53 + σ 2

54 + σ 2
55,

• F = σ11σ21 + σ12σ22 + σ13σ23 + σ14σ24 + σ15σ25,
• G = σ11σ31 + σ12σ32 + σ13σ33 + σ14σ34 + σ15σ35,
• H = σ11σ41 + σ12σ42 + σ13σ43 + σ14σ44 + σ15σ45,
• I = σ11σ51 + σ12σ52 + σ13σ53 + σ14σ54 + σ15σ55,
• J = σ21σ31 + σ22σ32 + σ23σ33 + σ24σ34 + σ25σ35,
• K = σ21σ41 + σ22σ42 + σ23σ43 + σ24σ44 + σ25σ45,
• L = σ21σ51 + σ22σ52 + σ23σ53 + σ24σ54 + σ25σ55,
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• M = σ31σ41 + σ32σ42 + σ33σ43 + σ34σ44 + σ35σ45,
• N = σ31σ51 + σ32σ52 + σ33σ53 + σ34σ54 + σ35σ55,
• O = σ41σ51 + σ42σ52 + σ43σ53 + σ44σ54 + σ45σ55.

Empirically, we can only identify the 15 terms (A,B,C,D,E, F ,G,H, I , J ,K,L,M,N,

O). Thus, not all 25 volatility parameters can be identified. This implies that the maximally
flexible specification that is well identified has a volatility matrix given by a triangular volatility
matrix12

� =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

σ11 0 0 0 0

σ21 σ22 0 0 0

σ31 σ32 σ33 0 0

σ41 σ42 σ43 σ44 0

σ51 σ52 σ53 σ54 σ55

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

12 Note that it can be either upper or lower triangular. The choice is irrelevant for the fit of the model.
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