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Index: A Real-Time Analysis

We examine the ability of the composite index of leading economic indicators to predict future movements in aggregate economic
activity. Previous examinations of predictive performance have evaluated either the in-sample residual errors from a forecasting
equation fitted to the entire sample of data or the out-of-sample forecast errors from an equation fitted to a subsample of the
data. Unlike previous evaluations, we perform a real-time analysis, which uses the provisional and partially revised data for the
leading index that were actually available historically, along with recursive out-of-sample forecasts. We find a substantial de-
terioration of forecasting performance in the real-time framework.
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The Government’s best-known tool for economic forecast-
ing—the index of leading indicators—will undergo a major
revision by the end of the year. . . .

New York Times (May 29, 1987)

1. INTRODUCTION

The prediction of aggregate economic activity with the
composite leading index (CLI) has enjoyed widespread
. popularity for several decades. Some empirical justification
for this popularity has been provided by a number of recent
formal evaluations of the forecasting ability of the CLI, which
have found that the CLI does contain useful information for
the prediction of aggregate economic activity. For example,
Auerbach (1982) and Koch and Rasche (1988), in analyses
of bivariate causality, found strong evidence that the CLI
is useful in linear prediction of industrial production even
after conditioning on lagged values of production and even
in out-of-sample forecasts. In a multivariate context, Braun
and Zarnowitz (1989) provided confirmatory evidence
showing that inclusion of the CLI in commonly estimated
vector autoregressive representations leads to a reduction
of in-sample residual variance.

As in most examinations of predictive performance, the
aforementioned studies evaluate either or both of two types
of forecast errors: (1) the residual errors from a model fit
to the entire sample of data, and (2) the out-of-sample fore-
cast errors from a model fit to just a portion of the data set.
Many have noted that these two types of errors may have
very different characteristics. In particular, the out-of-sam-
ple forecast errors for a given model are usually much larger
than its in-sample residual errors [for example, see Mak-
ridakis and Winkler (1989)]. This difference can often be
traced to the overfitting of the (misspecified) model, which
reduces the in-sample errors but does not improve forecast
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performance [e.g., Hendry (1980)]. In our analysis, we
highlight a little-recognized limitation of forecast evalua-
tions that examine either in-sample residuals or out-of-sam-
ple forecast errors, namely, that they are conducted with
final revised values of the data. In contrast, actual real-time
forecasting must rely on preliminary and partially revised
data. In this article we introduce a third category of forecast
errors that directly confronts this issue. We evaluate the
real-time predictive performance of the CLI by not only
examining out-of-sample forecasts but also by using the
preliminary and partially revised CLI data that would have
been available at the historical date of each forecast. Es-
sentially, we are able to reproduce the CLI information set
of a real-time forecaster.

The use of final revised CLI data in previous analyses of
the predictive ability of the CLI would not be a critical flaw
if the CLI were subject to only small revisions. Unfortu-
nately, the CLI is extensively revised from its preliminary
estimate to its final value. Not only are statistical revisions
incorporated as more complete historical data become
available for the components, but components are often added
and eliminated, ex post, to improve the leading index’s per-
formance retrospectively. The existence of such revisions,
especially the definitional ones, suggests the possibility that
the good performance of the CLI in previous forecasting
exercises may be spurious, in the sense that the CLI data
actually available in real time were substantially less help-
ful in forecasting changes in real activity than the evalua-
tions that use final CLI data suggest.

In Section 2 we discuss the nature of statistical and def-
initional revisions in the CLI and provide details of the CLI
data matrix that was constructed for our analysis. Section
3 describes our prediction methodology, which proceeds in
a number of stages as the forecaster’s information set is
progressively restricted from an ex post to a real-time, or
ex ante, analysis. The empirical results are contained in
Section 4, and Section 5 discusses the robustness of those
results. Concluding remarks are offered in Section 6.

2. REVISIONS IN THE LEADING INDEX

Although the information content of preliminary and par-
tially revised data is a consideration in any real-time fore-
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casting situation, it is especially important when evaluating
the performance of the composite index of leading indi-
cators. The CLI is extensively revised from its preliminary
estimate to its final form, undergoing both statistical and
definitional revisions. This section describes the nature of
these revisions. For descriptions of the components and the
methodology used to construct the CLI, see Auerbach (1982)
and Hertzberg and Beckman (1989).

Toward the end of each month during our sample, the
Bureau of Economic Analysis (BEA) issued a Business
Conditions Digest (BCD), which contained a preliminary
estimate of the previous month’s value of the CLI on the
basis of incomplete and preliminary source data. For ex-
ample, the October 1988 issue of the BCD contained the
initial estimate of the September 1988 value of the leading
index. Each month, the BCD also provided revisions in the
index for any or all of the preceding 11 months. These sza-
tistical revisions to the CLI occurred because of statistical
revisions in the component indicators (reflecting the col-
lection of larger, more representative source data samples
as time passes) and because some components were re-
leased too late to be included in the preliminary estimate
and could only be included in the first or second revision
of the index.

Statistical revisions, of course, plague the real-time inter-
pretation of most economic time series; in the case of the
CLI, however, the final data have not only undergone these
statistical revisions but, in addition, the components that
make up the index have been reselected and reweighted ex
post. These definitional revisions in the CLI involve a ret-
rospective reevaluation of the CLI’s performance over the
enlarged historical sample and are attempts to improve the
lead-time performance of the index during the historical
sample. Major changes in the definition of the CLI are fairly
frequent, occurring in August 1969, April 1975, February
1979, January 1982, January 1983, January 1987, and Jan-
uary 1989—about once every two years since the intro-
duction of the CLI in the November 1968 issue of the BCD.
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As a typical example, in the 1983 revision, the BEA re-
calculated component weights and standardization factors
(on the basis of additional data) and replaced two of the
components (crude materials price inflation and the change
in liquid assets) with series that were broadly similar but
produced a more consistent cyclical lead performance ret-
rospectively. [A complete chronology and description of all
compositional changes is provided in Diebold and Rude-
busch (1988).] Clearly, such ex post definitional changes
make inference about the real-time forecasting ability of the
CLI very difficult.

In other work (Diebold and Rudebusch 1988), we have
examined the magnitude of both statistical and definitional
revisions to the CLI. From December 1969 through January
1986, the standard deviation of the revision from the pre-
liminary estimate of the percent change in the CLI to the
final estimate (as of December 1987) is .86%. This is large
relative to the standard deviation of the percent change in
the final estimate of the CLI over that same period, which
is 1.11%; the signal-to-noise ratio is about 1.3. Within def-
initional regimes, when definitional revisions are not a fac-
tor, the standard deviations of revisions are smaller but still
substantial. Such large revisions imply that the ex ante, real-
time forecasting performance of the CLI may be much worse
than the ex post evaluations conducted with final, revised
data suggest.

In this article, we examine precisely how much of a de-
terioration in the forecasting performance of the CLI occurs
from using real-time CLI data. For this purpose we have
collected all preliminary and partially revised values of the
CLI as published sequentially in issues of the BCD from
November 1968 through December 1988. The data matrix
containing all of these values is illustrated schematically in
Table 1. Each row of the matrix provides the value of the
CLI for a particular month, ranging from 1948:1 to 1988:11
(491 months). The entries of a given row vary across the
columns as the value of the CLI for that month is revised.
Each column of the matrix provides the data given in one

Table 1. Schematic of CLI Data Matrix

Data released in this month (BCD issue date)

Data for
this month  j = 1968:11 j = 1968:12 j=t j=1988:11 = 1988:12
i = 1948:1 CLI(i), CLI(i); CLI(i), CLI(), CLI(),
i =1948:2 CLI(i); CLI(7); CLI(i); CLI(i), CLI(i),
i=1948:3 CLI(i); CLI(i); CLI(i); CLI(i), CLI(i);
i = 1968:10 CLI( Y CLI(), CLI(i); CLI(i), CLIG),
i = 1968:11 0 CLI(iy? CLI(i), CLI(), CLI(),
i = 1968:12 0 0 CLI(i), CLI(i), CLI(i),
i=t—1 0 0 cuGy . . CLI(j), CLI(i),
i=t 0 0 0 .o CLI(i), CLI(i),
i = 1988:10 0 0 0 .o CLIG)f CLI(i);
i=1988:11 0 0 0 .o 0 CLI(i)?

NOTE: The CLI data matrix is 491 x 242. The entry CLI(i); denotes the value of the leading index in the ith month that was
available and current as of the jth month; a zero entry indicates that no CLI data had been released for that month. A superscript
p denotes the preliminary (initial) estimate for a given month. Moving across the columns from left to right yields varying nonzero
entries (from revisions) and a progressively larger sample as history unfolds.
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issue of the BCD; the leftmost column is from the Novem-
ber 1968 issue, which first introduced the CLI and pre-
sented historical CLI data from January 1948 through Oc-
tober 1968, the next column is from December 1968, and
so forth, across the 242 issues. A zero value in the i, j entry
indicates that data for the ith month (the row) were not yet
released in the jth month (the column). Moving through
real time across the columns, each additional month adds
one more nonzero observation to the column (denoted by
superscript p for preliminary) and changes any or all of the
previous, nonzero entries. Every statistical and definitional
revision in the CLI is thus represented. Statistical revisions
change only the last few nonzero entries in the preceding
column, whereas definitional revisions usually will change
all of them. This data matrix, which contains about 90,000
nontrivial entries, allows us to reproduce the precise infor-
mation content in the CLI available to forecasters at any
point in time.

3. METHODOLOGY

We shall consider the usefulness of the CLI for predict-
ing industrial production (IP) in a linear forecasting frame-
work. In particular, we examine the marginal predictive in-
formation content of the CLI beyond that embodied in lags
of industrial production. There are five basic forecasting
scenarios that we consider, each differing by the inclusion
or exclusion of CLI lags and by the degree to which they
mimic an actual real-time forecasting environment. The first
two scenarios involve in-sample residuals and constitute the
usual ex post Granger causality test. The second two are
partially ex ante exercises that use recursive estimates of
forecasting models, that is, the sample is enlarged by one
observation at a time and the model is reestimated with each
new observation and used to produce out-of-sample fore-
casts. Finally, the last scenario produces real-time forecasts
with the CLI by using recursive estimates and by using the
preliminary and partially revised estimates of the CLI that
were historically available.

The first two forecasting scenarios are based on the entire
sample of final revised data. The first of these estimates the
regression,

4
IP, =By + Z BilPiipiq + &,

i=1

ey

where IP is the log of the level of industrial production.
The forecasting equation for this scenario will be referred
to as the FF1 regression (for Full sample, Final data, and
lags of I variable on the right side, namely, IP). The num-
ber of months ahead the prediction is being made (k) is
varied over 1, 4, 8, and 12. The lag length of the estimated
regression (p) is also varied over 1, 4, 8, and 12. (The
sample of IP data used on the left side of FF1, and FF2
later, always ranges from 1950:1 to 1988:12. Of course,
depending on p and k, the ranges of the right side IP data
and, in FF2, of the CLI data vary.)

The second ex post regression includes on the right side
lagged values of the final revised CLI. (In terms of the ear-
lier-discussed CLI data matrix, the CLI data used are from
the rightmost column.) Specifically, we estimate (from
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1950:1 to 1988:12) the regression:

p p
P, =By + D, BiTP iy + 0, %CLL i + 8, (2)
i=1 i=1
where CLI is the log of the level of the composite leading
index, and again we let k = 1, 4, 8, 12 andp = 1, 4, 8,
12. We denote this as the FF2 regression (Full sample, Fi-
nal data, and lags of 2 variables on the right side, namely,
IP and CLI).

From the FF1 and FF2 regressions, we save the 231 re-
siduals from 1969:10 to 1988:12. (This sample of residuals
is used for comparison with the later recursively estimated
regressions. Given November 1968 as the first historical
release date of the CLI, the first possible 12-step-ahead,
real-time forecast was for the 1969:10 value of IP.) The
causality test of Granger (1969), which was employed in
this context by Auerbach (1982), provides a formal com-
parison of the sums of squares of these residuals. The FF1
regression provides the predictive content of only own-lags
of IP, and the FF2 regression gives predictions enhanced
with the marginal contribution from the CLI. In terms of
subsequent results, it will prove useful to think of the fitted
values from the FF1 and FF2 regressions as “forecasts”;
clearly, however, these “forecasts” are completely ex post,
as the estimation uses the full sample of final revised data.
As noted in the introduction, the “forecast errors” in these
two ex post scenarios are merely in-sample regression re-
siduals. These errors are used to construct an associated
mean squared prediction error (MSPE) and mean absolute
prediction error (MAPE) from each regression. The MSPE
is simply a normalized restricted sum of squares (in the FF1
case) and a normalized unrestricted sum of squares (in the
FF2 case).

In the second pair of forecasting scenarios, the ex post
nature of FF1 and FF2 is partially relaxed via recursive es-
timation of the equations to mimic real-time forecasting
(which is affected by subsample sampling variability in
coefficient estimates); however, the final revised CLI data
are still used. In this out-of-sample forecasting exercise,
Equations (1) and (2) are denoted by RF1 and RF2 (for
Recursive, Final data regressions). An example will make
the procedure clear. Consider the estimation of RF2, and
suppose that p = k = 4. Then, we first estimate, over the
period 1950:1 through 1969:6,

4 4
IP, = By + Z BilP, 4 + Z Y CLLigs1 t &, (3)
i=1 i=1
where the CLI is the final revised series (1988:12 defini-
tion). The four-step-ahead forecast of IP,g.;0 (Which is made
with the final data through 1969:6) is then constructed from
the estimated coefficients as

4 4

HS1969:10 = Bo + 2 Ei IPg69:10—i—a+1 T z ¥: CLL 060:10-1-4+1-
i=1 i=1

)]

The regression is then reestimated with one more obser-
vation using data from 1950:1 through 1969:7, the forecast
for 1969:11 is constructed, and so forth. We progress re-
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cursively through the sample in this fashion—continually
reestimating and reforecasting—until the forecast for 1988:12
is constructed, at which point the sample is exhausted. For
RF1 and RF2 and for each combination of k£ and p, we
obtain a 231-element vector of out-of-sample forecasts. An
MSPE and an MAPE are calculated for each of the asso-
ciated vectors of prediction errors.

In the recursive regression RF2 each “forecast” is com-
pletely out-of-sample with regard to parameter estimation
but, as should be clear from the earlier discussion of def-
initional revisions in the CLI, these “forecasts” may in-
corporate subtle ex post information through retrospective
reconstruction of the CLI by the BEA. To eliminate this ex
post information, our final scenario constructs real-time ex
ante forecasts with the CLI by recursively estimating (2),
but at each month in which the k-step-ahead forecast is made
using only the preliminary and partially revised CLI data
that were actually available in that month. Thus, as a new
regression is estimated for each month, the CLI data vector
used for the regression changes. For each new month the
CLI data vector will have one more element for the latest
preliminary number, but the 11 previous elements, in the
case of statistical revisions, or perhaps all previous ele-
ments, in the case of definitional revisions, may have
changed. We shall denote this real-time ex ante forecasting
regression by RP2 (Recursive, Preliminary CLI data fore-
casts). The MSPE and MAPE of this regression can be
compared with RF2, determining the forecast deterioration
due to provisional data, and with RF1, providing a real-
time ex ante causality test analog. [The CLI data vector
used in RP2 corresponds to a particular column of the real-
time data matrix, moving from the leftmost column to the
rightmost column as time passes. In terms of Eq. (3) (with
p = k = 4), the four-step-ahead forecast for 1969:10 is
made with the CLI data matrix column that contains the
preliminary number for 1969:6. If we took into account the
one-month lags in releasing the CLI and IP data, the real-
time forecast dates would be advanced one month, but the
data used and the forecasts obtained would not change.]

In the next section, we analyze the forecast errors that
result from application of the aforementioned procedures.
We also have explored, as shall be described in Section 5,
several variations and extensions of these methods to assess
the robustness of our results.

4. EMPIRICAL ANALYSIS

The methodology outlined previously produces 80 vec-
tors of forecast errors, corresponding to all combinations
of steps ahead forecasted (k = 1, 4, 8, and 12) and number
of lags included (p = 1, 4, 8, and 12) for each regression
strategy FF1, FF2, RF1, RF2, and RP2. Each vector of
errors has 231 elements, corresponding to forecasts for
1969:10 through 1988:12. For each vector the MSPE and
the MAPE were calculated; these are presented in Tables
2 and 3, respectively.

Let us first consider the MSPE results in Table 2. There
are four separate comparisons that are of particular interest.
The first is the ex post Granger causality test, which com-
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Table 2. Mean Squared Prediction Error, Industrial Production

Steps Lags F )
ahead  included orecast scenario
(k) r) FF1 FF2 RF1 RF2 RP2
1 1 .87 .63 .88 .70 1.08
1 4 .64 .50 .65 .54 .65
1 8 .64 A7 .66 .54 .66
1 12 .64 .47 .67 .56 .66
4 1 7.66 4.68 8.11 5.89 11.85
4 4 6.29 3.47 6.74 4.42 7.64
4 8 6.29 3.16 6.80 4.09 7.21
4 12 6.47 3.24 7.24 455 7.89
8 1 20.55 1292 2287 16.90 34.15
8 4 18.69 9.21 20.96 1222  25.54
8 8 19.10 899 21.89 12.82 26.08
8 12 19.28 9.21 22.80 14.50 28.31
12 1 3477 2457 4013  31.26 56.09
12 4 33.38 18.63  39.41 24.61 48.69
12 8 33.83 18.51 4112 27.02 50.52
12 12 33.14 18.06 4156  28.59 52.36

NOTE: Entries are MSPE x 10,000.

pares the MSPE for the in-sample residuals from the FF1
regression [denoted by MSPE (FF1)] with the MSPE for
the in-sample residuals from the FF2 regression [denoted
by MSPE (FF2)]. For all p and k combinations, a consistent
pattern emerges:

MSPE(FF2) < MSPE(FF1). (Result A)

This confirms the bivariate causality results of Auerbach
(1981); that is, the CLI has marginal predictive content, ex
post.

The second comparison of interest extends the Granger
causality methods to out-of-sample forecasts from regres-
sions estimated recursively with the final data. In this case,

MSPE(RF2) < MSPE(RF1). (ResultB)

Thus this out-of-sample analog to the Granger test also in-
dicates that the CLI has marginal predictive power beyond
own-lags of IP.

Table 3. Mean Absolute Prediction Error, Industrial Production

:,:zgz incL:ﬁl%se d Forecast scenario
(k) (p) FF1 FF2 RF1 RF2 RP2
1 1 .68 .61 .69 .66 .78
1 4 .58 .53 .58 .57 .62
1 8 .58 .52 .59 .56 .61
1 12 .59 .62 .60 .58 .62
4 1 2.00 1.68 2.13 1.92 2.51
4 4 1.80 1.47 1.91 1.66 2.09
4 8 1.80 1.39 1.93 1.56 1.99
4 12 1.79 1.40 1.93 1.63 2.06
8 1 3.51 2.88 3.80 3.23 4.14
8 4 3.30 2.36 3.60 2.7 3.52
8 8 3.32 2.30 3.67 2.69 3.51
8 12 3.34 2.34 3.73 2.86 3.72
12 1 4.78 4.04 5.20 4.58 5.39
12 4 4.67 3.40 5.15 3.93 5.02
12 8 4.68 3.48 5.23 412 5.11
12 12 4.65 3.44 5.25 4.18 5.24

NOTE: Entries are MAPE x 100.
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It is also interesting to note the deterioration in perfor-
mance of the out-of-sample forecasts compared with the in-
sample residuals. For all p and k£, MSPE(FF1) < MSPE(RF1)
and MSPE(FF2) < MSPE(RF2).

Finally, we consider real-time forecast comparisons that
involve the preliminary CLI data. Our third result compares
the recursive forecasting regression using the final CLI data
with the recursive forecasting regression using the prelim-
inary CLI data and finds that

MSPE(RF2) < MSPE(RP2). (ResultC)

This indicates that the final revised CLI data are more help-
ful in forecasting IP than the preliminary data; thus statis-
tical and definitional revisions clearly improve the CLI’s
predictive power. Our final comparison considers whether
the preliminary CLI data have any marginal predictive power
over one-lags of IP. Here, we summarize our findings as

MSPE(RP2) =~ MSPE(RF1) (ResultD)

to indicate that, in general, the MSPE of these scenarios
are quite close and there is no clear ranking across all com-
binations of p and k for these two MSPE’s. Thus inclusion
of the CLI in real time does not improve and, often, wors-
ens predictive performance relative to simply forecasting
with an IP autoregression. None of these results change when
MSPE is replaced by MAPE (Table 3).

The MSPE and MAPE results are illustrated in Figure 1
for the case of four-step-ahead forecasts (k = 4) using eight
lags (p = 8). The sawtooth pattern suggested by Results
A-D is clearly evident. MSPE falls from FF1 to FF2 with
inclusion of final CLI data. It rises again to an even higher
level in the recursive RF1 but falls with the addition of
revised CLI data in RF2. Finally, however, the MSPE rises
when the preliminary CLI data are included in RP2.

Although the foregoing rankings are indicative, it is im-
portant to examine formally the statistical significance of
the comparisons. A test for significance of the MSPE dif-
ference between two unbiased forecasts is readily available.
Let ¢, denote a given forecast error, and let e, denote a
second comparison forecast error. Then the difference in
the MSPE’s, which reduces to the difference in variances,
by unbiasedness, is simply the covariance of (e, + e,) and
(e, — ey). That is,

El(e, + ex)(e; —e)] = 0'? - 0'%-

&)

Thus testing for significance of o3 — o3 is equivalent to
testing significance of cov[(e; + e,), (e, — €;)]. [See Gran-
ger and Newbold (1986), who noted that this test is uni-
formly most powerful invariant.]

We estimate this covariance and test its significance us-
ing methods robust to serial correlation of unknown form;
such an approach is particularly important for £ > 1, be-
cause multiple-step-ahead forecast errors are generally se-
rially correlated. Define x = ¢, + e; andy = e, — ¢,. We
proceed by noting that the covariance (5) is just the cross-
covariance of x and y at a displacement of O, that is, v,,(0),
which can be consistently estimated in the usual manner.
It is well known that under standard assumptions [see Pries-
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Figure 1. Performance of IP Forecasts: Four-Step-Ahead Forecast
With Eight Lags (k = 4, p = 8).

tley (1980, pp. 692-693)] the variance of the sample co-
variance is

| =

var(§o(0) = 2. 2, Dl + Yoy,
a consistent estimate of which requires consistent estimates
of v.(7), ¥%,(7), ¥u(7), and v,,(7), which can be obtained
in the usual manner. One remaining issue is the truncation
of the doubly infinite sum. We explored a range of trun-
cation points; the empirical results, which are contained in
Table 4, use a truncation at lag 25, but the estimates were
robust to other choices. The MSPE differences associated
with Results A, B, and C are almost uniformly significant
at all steps ahead and for all lags included. The MSPE dif-
ferences associated with Result D, conversely, are insig-
nificant. We conclude that, subject to the qualifications and
caveats noted below, inclusion of the CLI in real-time fore-
casting equations is of little value.

5. VARIATIONS AND EXTENSIONS

The results reported above are robust to a number of vari-
ations. In particular, qualitatively similar results were ob-
tained when first differences rather than levels of all vari-
ables were used, as shown in the MSPE comparisons in
Table 5. Qualitatively similar results were also obtained,



608

Journal of the American Statistical Association

Table 4. Tests for Significance of MSPE Differences

Steps Lags
ahead included Result A, Result B, Result C, Result D,
(k) (P) FF1-FF2 RF1-RF2 RF2-RP2 RF1-RP2
1 1 .021 .033 .018 .266
1 4 .000 .005 .040 451
1 8 .000 .002 .025 426
1 12 .000 .006 .037 .378
4 1 .035 .066 .020 .202
4 4 .004 .018 .021 .393
4 8 .001 .010 .016 .480
4 12 .001 .008 .009 .459
8 1 .057 .108 .019 173
8 4 .014 .038 .008 .295
8 8 .013 .039 .009 .338
8 12 .012 .038 .007 .320
12 1 .085 142 .027 .183
12 4 .043 .071 .014 .269
12 8 .048 .079 .020 .333
12 12 .044 .078 .017 .325

NOTE: Entries are marginal significance levels (p values) for the null hypothesis that the true MSPE difference is 0.

as shown in Table 6, after eliminating from the sample the
pre-1960 data, which are of lower quality.

From the perspective of those who originally developed
the leading indexes of economic activity, a potential ob-
jection to our results is that we evaluate the CLI using a
questionable criterion, namely, the ability to forecast move-
ments in IP. Instead, they might argue that the CLI is de-
signed to signal broad changes in business conditions and,
particularly, business recessions. One response to this would
be to consider a more comprehensive indicator of aggregate
economic activity. (IP includes roughly one-third of total
output.) With this in mind, we also conducted the analysis
of Section 4 after replacing IP with the composite index of
coincident economic indicators, a much broader monthly
measure of economic conditions. Little difference was found.
As shown in Table 7, there is an obvious sawtooth pattern

Table 5. Mean Squared Prediction Error,
Growth in Industrial Production

Steps Lags F ,
ahead included orecast scenario
(k) (p) FF1 FF2 RF1 RF2 RP2
1 1 6.48 5.85 6.57 5.95 6.51
1 4 6.39 5.19 6.52 5.41 5.85
1 8 6.42 4.89 6.60 5.42 5.75
1 12 6.44 4.90 6.79 5.77 6.48
4 1 8.48 7.30 8.72 7.55 8.82
4 4 8.53 6.72 8.83 717 8.71
4 8 8.58 6.44 9.05 7.33 9.16
4 12 8.53 6.59 9.36 8.02 9.94
8 1 8.73 8.28 8.99 8.51 9.47
8 4 8.78 7.98 9.17 8.44 9.70
8 8 8.78 8.22 9.50 9.19 19.58
8 12 8.72 8.16 9.49 9.45 10.88
12 1 9.05 8.82 9.55 9.33 9.31
12 4 8.95 8.75 9.65 9.54 9.79
12 8 8.89 8.50 9.64 9.45 10.05
12 12 8.74 8.46 9.60 9.66 9.94

NOTE: Entries are MSPE X 100,000.

for the MSPE for forecasting the composite coincident in-
dex that accords with the earlier results.

More fundamentally, however, there is some evidence
that those who originally constructed the leading index in-
tended to use it for the prediction of business cycle turning
points rather than for forecasting changes in the level of
aggregate economic activity over the entire cycle. In this
view attention is placed on the ability of the leading index
to predict an economic event (a turning point) rather than
its ability to forecast future values of economic time series.
We have some sympathy for this view; indeed, in Diebold
and Rudebusch (1989), we employed a turning point filter
that translated movements in the CLI (using final revised
data) into probabilities of an imminent recession. However,
in Diebold and Rudebusch (1991), a companion article to
this one, we showed that the ability of the CLI to forecast
turning points on a real-time basis (using the data matrix
of Table 1) is substantially worse than its ability on an ex
post basis using final revised data. Thus we believe that
our qualitative conclusions are robust to use of an evalua-
tion criterion of turning point prediction. To provide further
evidence more directly in line with the present investiga-
tion, we examined regressions where IP on the left side was
replaced in each scenario by a dummy variable signaling
expansion or recession. The relative ranking of prediction
errors followed that in Section 4. [Further evidence is pro-
vided by three earlier studies—Stekler and Schepsman
(1973), Hymans (1973), and Zarnowitz and Moore (1982)—
that have employed preliminary CLI data along with simple
turning point filters, for example, the use of three consec-
utive declines as a recessionary signal. These studies have
also found that use of preliminary data reduces the useful-
ness of the CLI in turning point forecasting.]

One could also accord much more statistical expertise to
the real-time forecaster than we have done; in particular,
there are real-time prediction procedures that are more so-
phisticated in extracting information from preliminary data
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Table 6. Mean Squared Prediction Error,
Post-1960 Industrial Production

fiieegfi incL:Z%se d Forecast scenario
(k) (p) FF1 FF2 RF1 RF2 RP2
1 1 .87 .61 .89 .66 .88
1 4 .64 .49 .71 .59 .67
1 8 .64 .46 .74 .59 .69
1 12 .64 44 77 .61 72
4 1 7.70 4.30 8.40 5.39 8.69
4 4 6.20 3.26 7.10 4.39 6.35
4 8 6.19 2.97 7.46 4.18 6.35
4 12 6.10 2.77 8.03 4.30 6.58
8 1 20.69 11.85 24.40 16.06 26.75
8 4 18.42 8.67 22.30 12.93 22.19
8 8 18.39 7.81 24,50 13.29 24 .45
8 12 18.04 7.64 25.14 14.67 26.39
12 1 35.01 22.98 43.79 32.57 51.23
12 4 32.27 17.80 42.07 28.94 48.04
12 8 32.09 17.32 43.36 31.97 52.18
12 12 31.01 16.85 43.41 35.23 55.50

NOTE: Entries are MSPE x 10,000.

than the regression RP2. As discussed by Howrey (1978,
1984), one could model and forecast future data revisions
in a real-time, recursive procedure and incorporate these
expected revisions into forecasts (via the Kalman filter).
Given the frequency of the unforecastable definitional CLI
revisions (and the resulting change in the properties of re-
visions as components are replaced), however, this proce-
dure would appear to be of little practical use for forecast-
ing with the CLI.

Finally, we note that the IP data used throughout this
article are always of final revised form (as of May 1, 1989).
We took such an approach, in part, because our intent is
to measure the differences in forecast performance when
using the preliminary as opposed to revised CLI while hold-
ing other factors constant. The alternative, of course, would
be to use the preliminary and partially revised IP data as

Table 7. Mean Squared Prediction Error,
Composite Coincident Index

f,igz incL:Z/%se d Forecast scenario
(k) (p) FF1 FF2 RF1 RF2 RP2
1 1 .66 .48 .66 .48 .67
1 4 49 41 .50 42 48
1 8 .49 .39 .51 43 .49
1 12 .49 .37 .52 .43 .50
4 1 5.80 3.25 6.16 3.49 6.16
4 4 4.42 2.64 4,73 2.87 4.26
4 8 4.44 2.46 4.86 2.84 4.30
4 12 434 2.36 4.94 2.89 4.52
8 1 16.46 8.64 18.61 9.87 18.26
8 4 13.66 714 15.53 8.08 14.77
8 8 14.04 6.93 16.32 8.29 15.31
8 12 13.66 6.96 16.40 8.63 15.51
12 1 29.87 16.68 35.28 19.85 31.75
12 4 26.63 13.87 32.13 16.15 29.49
12 8 27.10 13.95 33.51 16.77 30.03
12 12 26.50 14.02 33.97 17.45 30.29

NOTE: Entries are MSPE X 10,000.
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they were available contemporaneously. This choice emerges
for both the left side and the right side of the forecasting
equations.

First, consider the use of final IP on the left side. We
use final rather than contemporaneous IP as the regressand
becavse we are interested in evaluating the ability of the
CLI to forecast truth, which is taken to be the final IP value.
An alternative approach might examine the accuracy of pre-
dictions of the initial estimate (or kth revision, k = 1, 2,
3, ...) of each month’s IP. It is conceivable that the CLI
is better at predicting early releases of IP than at predicting
final values of IP (in part, perhaps, because the former use
labor input data to infer physical output data released sub-
sequently). To reiterate, however, we are interested in pre-
diction of the best, that is, final, estimate of movements in
aggregate output.

Second, consider the use of final IP on the right side.
The alternative would involve constructing a matrix of pre-
liminary and partially revised IP data, similar to the CLI
matrix illustrated in Table 1, and using each column se-
quentially in forecasting regressions. This would provide a
completely real-time analysis. Clearly, the outcome of this
exercise would depend on the nature and size of revisions
in the IP index. First, we note that definitional revisions of
IP, which would cause conceptual complications if impor-
tant, do occur but are of negligible importance during our
sample. The three relevant revisions, which occurred in 1971,
1975, and 1985, primarily affected the industry-level clas-
sification scheme with only very small effects on the monthly
movements in the aggregate IP index. [See Hosley and
Kennedy (1985) and Federal Reserve Board (1986) for de-
tails.] Statistical revisions were also very small relative to
those in the CLI, with a signal-to-noise ratio for the initial
estimate of IP of about 2.8, twice as large as for the CLI
[see Kennedy (1990)]. It is conceivable that adding this small
amount of noise to the right side IP lags in RF1 and RP2
could increase the forecast errors relatively more in RF1,
thus overturning our Result D. In such a (truly) real-time
scenario, the uncertainty about recent movements in IP would
allow the CLI to aid in prediction. Although we recognize
such a possibility, we would argue that it is in some sense
inconsequential. Such a result would provide a justification
for use of the CLI that is quite different from the one ad-
duced in the earlier ex post studies described in the intro-
duction. Namely, the CLI would have little intrinsic leading
ability but could possibly supplant the inadequacies of other
data series.

6. SUMMARY AND CONCLUDING REMARKS

We have analyzed the value of the CLI of economic in-
dicators in linear prediction of IP. We found that the CLI
performed admirably in an ex post evaluation, confirming
the results of others. By constructing a series of scenarios
that progressively approached a real-time analysis (i.e., by
contracting the forecaster’s CLI information set until it
matched that available in real time), however, we were able
to chart a severe deterioration in the CLI’s predictive per-
formance. In forecasting frameworks with squared error loss
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and absolute error loss, we found that inclusion of the CLI
in real-time forecasting equations generally failed to im-
prove forecast performance.

Do our cumulative results indicate that the CLI is of no
value as a forecasting tool? Perhaps, but not necessarily.
In addition to the reservations expressed in Section 5, there
are two general qualifications to such a conclusion. First,
our evaluation, like previous evaluations, involved straight-
forward application of the linear model. It is possible that
seasoned and skilled users can use their expert knowledge
to extract useful predictive information from the CLI via
more sophisticated procedures. Second, it is possible that
the “mistakes” in the selection of components made in the
early history of the construction of the CLI were part of a
process of learning about cyclical behavior and statistical
indexes that will not be repeated. In this interpretation, fu-
ture definitional revisions in the CLI would be minor, and
the CLI might perform much better on an ex ante basis.
[Here, perhaps, the research of Stock and Watson (1989)
may prove fruitful.] On balance, however, our results should
be interpreted as sounding a strong cautionary note on fore-
casting with the CLI as presently constructed by the BEA.

Finally, from a methodological point of view, it is worth
noting that our general approach may have wide applica-
bility for questions of model selection and inference. In
particular, the examination of out-of-sample or real-time
causality using tests for MSPE equality on recursive resid-
uals from restricted and unrestricted models may provide a
more powerful tool to discriminate between models than
conventional causality tests.

[Received June 1989. Revised January 1991.]
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