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Abstract

Most existing macro-finance term structure models (MTSMs) appear incompatible
with regression evidence of unspanned macro risk. This “spanning puzzle” appears
to invalidate those models in favor of new unspanned MTSMs. However, our empir-
ical analysis supports the previous spanned models. Using simulations to investi-
gate the spanning implications of MTSMs, we show that a canonical spanned model
is consistent with the regression evidence; thus, we resolve the spanning puzzle. In
addition, direct likelihood-ratio tests find that the knife-edge restrictions of
unspanned models are rejected with high statistical significance, though these re-
strictions have only small effects on cross-sectional fit and estimated term premia.
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1. Introduction

A long literature in finance has modeled bond yields using a small set of factors that are lin-

ear combinations of bond yields. The resulting “yields-only” models provide a useful

reduced-form description of term structure dynamics but offer little insight into the eco-

nomic forces that drive changes in interest rates. To provide that underlying insight, much

research has used affine macro-finance term structure models (MTSMs) to examine the

connections between macroeconomic variables and the yield curve. For example, many

papers have estimated reduced-form MTSMs with a vector autoregression (VAR) for the

macroeconomic and yield-curve variables coupled with a reduced-form pricing kernel.1 In

* The views expressed in this paper are those of the authors and do not necessarily reflect those of

others in the Federal Reserve System. We thank Martin Andreasen, Mikhail Chernov, Greg Duffee,

Jim Hamilton, and Anh Le for helpful comments, and Marcel Priebsch for providing data and code

for the replication of his results.

1 Some examples of this approach include Ang and Piazzesi (2003); Bernanke, Reinhart, and Sack

(2004); Ang, Bekaert, and Wei (2008); Ang et al. (2011); Bikbov and Chernov (2010); Joslin, Le, and

Singleton (2013b); and Bauer, Rudebusch, and Wu (2014).
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addition, by incorporating structural relationships, many researchers have developed equi-

librium MTSMs for endowment or production economies.2 Throughout all of this macro-

finance term structure research, the short-term interest rate is represented as an affine func-

tion of risk factors (i.e., the state variables) that include macroeconomic variables.

Accordingly, the assumption of the absence of arbitrage and the usual form of the stochas-

tic discount factor imply that model-implied yields are also affine in these risk factors. This

linear mapping from macro factors to yields can, outside of a knife-edge case, be inverted

to express the macro factors as a linear combination of yields. Hence, these models imply

“invertibility” (Duffee, 2013b) or “spanning,” in which information in the macro variables

is completely captured by the contemporaneous yield curve.

Because they imply macro spanning, the models used in macro-finance term structure re-

search have recently come under severe criticism. Joslin, Priebsch, and Singleton (2014)

(henceforth JPS) argue that previous MTSMs impose “counterfactual restrictions on the

joint distribution of bond yields and the macroeconomy” (p. 1197). The criticism is based

on regression evidence that suggests the presence of unspanned macro information. First,

regressions of macro variables on observed yields can give quite low R2. For example, JPS

find that only 15% of the variation in their measure of economic activity is captured in the

first three principal components (PCs) of the yield curve, rather than the 100% predicted

by theoretical macro spanning (also see Duffee, 2013b). Second, there is evidence that

macroeconomic variables have predictive power for excess bond and stock returns beyond

the information contained in yields, as documented by JPS and others (Cooper and

Priestley, 2008; Ludvigson and Ng, 2009; Greenwood and Vayanos, 2014). Third, Duffee

(2013a, 2013b) documents that forecasts of macroeconomic variables are not spanned by

the yield curve as implied by spanned MTSMs.

The apparent conflict between the theoretical spanning condition implicit in past empir-

ical MTSMs and the tripartite regression evidence of unspanned macro information consti-

tutes what we term the “spanning puzzle.” It casts doubt on the validity of essentially all

previous macro-finance models used in the literature and is a major road-block to further

macro-finance term structure research. In his comprehensive survey of macro-finance bond

pricing, Duffee (2013a) describes the contradiction between theoretical spanning and the

contrary regression evidence as an “important conceptual difficulty with macro-finance

models” (p. 412). Similarly, Gürkaynak and Wright (2012) see the spanning puzzle as a

“thorny issue with the use of macroeconomic variables in affine models” (p. 350). In re-

sponse, JPS and others advocate replacing existing spanned MTSMs with unspanned

MTSMs. These new models impose knife-edge restrictions in an otherwise standard MTSM

to sever the direct link from macro factors to yields.3 Accordingly, the macro variables are

unspanned by construction, as they do not directly determine bond pricing and yields, and

yields cannot be inverted for macro factors. If important factors were indeed unspanned

2 Equilibrium finance models of the term structure include Wachter (2006); Piazzesi and Schneider

(2007); Buraschi and Jiltsov (2007); Gallmeyer et al. (2007); Bekaert, Engstrom, and Xing (2009); and

Bansal and Shaliastovich (2013). Among many others, Hördahl, Tristani, and Vestin (2006);

Dewachter and Lyrio (2006); Rudebusch and Wu (2008); and Rudebusch and Swanson (2012) con-

sider term structure implications of macroeconomic models with production economies.

3 Examples of research using reduced-form unspanned models include Wright (2011); Chernov and

Mueller (2012); Priebsch (2014); and Coroneo, Giannone, and Modugno (2015).
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macro variables, that would require development of a new class of structural economic

models to connect bond yields to the economy.4

In this paper, we resolve the spanning puzzle by providing strong empirical support for

spanned models and reconciling them with the regression evidence. We first consider a dir-

ect statistical test of plausible estimated versions of spanned and unspanned models. We

demonstrate how unspanned models are nested by spanned models and perform likelihood-

ratio tests of the knife-edge restrictions required for unspanned models. Our tests strongly

reject these restrictions and hence the unspanned models, both for the macro data used by

JPS as well as for an alternative data set with more usual measures of economic activity and

inflation. We also directly test the knife-edge unspanned macro restrictions in reduced-form

yield-curve models and find that they are strongly rejected, independent of how many yield

factors and which macro data are used.

Our second contribution is a simulation-based test which shows that estimated spanned

MTSMs are in fact not contradicted statistically by the regression evidence on unspanned

macro information. Using our empirical spanned MTSMs, which are representative of a

broad class of models used in macro-finance research, we generate artificial samples of

yields and macro data. Using these simulated data, we estimate regressions that are com-

monly used to assess the extent of unspanned macro information. This provides the empir-

ical distributions of the various regression test statistics under the null of a spanned MTSM.

Comparing the regression statistics obtained from the actual data to these distributions

allows us to statistically assess whether the regression results could have plausibly been gen-

erated from the spanned model. We find that the regression evidence is completely consist-

ent with spanned macro-finance models. In particular, the simulation-based, small-sample

p-values of the regression statistics that appear to indicate the presence of unspanned macro

information are generally far above conventional significance levels. Our results reconcile

the spanned models with the data and demonstrate that the regression evidence of JPS and

others provides no empirical reason to reject these models.

How is it that spanned macro-finance models can generate regression results that are

consistent with the regression evidence suggesting the presence of unspanned macro infor-

mation? We provide two reasons. First, for a given spanned model with, say, N risk factors,

macro spanning implies that macro variables will be spanned by N linear combinations of

yields. But the macro variables will not be spanned by less than N linear combinations, so

the validity of the regression evidence for unspanned macro information depends on using a

sufficient number of linear combinations of yields.5 Second, even after incorporating the

correct number of factors, the regressions are only guaranteed to properly reject a spanned

model if that model fits the data exactly—that is, with no measurement error. But measure-

ment error—a catch-all for model misspecification, data imperfections, or other noise—is a

necessary feature in all empirical yield-curve models. Indeed, the addition of measurement

4 It would also require a rethinking of the monetary policy transmission mechanism; for example, as

JPS note: “Our results suggest that a monetary authority may affect the output gap and inflation

through channels that leave bond yields unaffected, by having a simultaneous [and offsetting] ef-

fect on expectations about the future short rates and risk premiums” (p. 1224).

5 For example, consider a spanned MTSM with three yield factors and two macro factors, for a total

of five state variables (or risk factors). Projections of macro variables or excess bond returns on

three yield factors—say, the level, slope, and curvature of the yield curve—will not provide valid

tests of spanning.
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error is a critical requirement to reconcile the N -factor models with real-world data that

has more than N variables and never follows an exact factor structure. This same measure-

ment error also resolves the spanning puzzle and reconciles MTSMs with the regression evi-

dence. Of course, adding large amounts of noise can render any two statistical models

indistinguishable. But we show that incorporating just the usual, very small yield measure-

ment errors in empirical MTSMs is sufficient to generate the appearance of unspanned

macro information in the data: The wedge created by measurement error with a standard

deviation of six basis points is enough to prevent the spanning regressions from properly

identifying the presence or absence of spanning in MTSMs.6

Some other studies have also investigated the wedge between information in true and

observed risk factors created by measurement error in yield-curve models. Duffee (2011b)

shows that this can hide important information from the yield curve factors, which can be

recovered using Kalman-filtering. In a very specific macro-finance model with trend infla-

tion, Cieslak and Povala (2015) show that the presence of yield measurement error makes it

difficult to recover a risk-premium factor. These studies do not investigate the effects of

measurement error in commonly used macro-finance models or address whether those

models can be reconciled with the spanning regression evidence, as we do in this paper.

Our results show that the unspanned regression evidence provides no statistical basis for

preferring either unspanned or spanned models. However, one of the main uses of MTSMs

has been to estimate risk premia in long-term interest rates and bond returns. We find that

the unspanned knife-edge restrictions are in fact unimportant for estimating such premia.

That is, while the rejections of these restrictions are statistically significant, they are not

economically significant for this purpose, as spanned and unspanned models imply essen-

tially identical term premia.7 Because unspanned models may be able to reproduce some

economic features of spanned models with a more parsimonious parameterization, they

may be a useful approximation for certain purposes.

In addition, our paper also provides new evidence that helps to elucidate, in economic

terms, the spanning regression results. We broadly classify two types of macroeconomic

variables: those directly relevant for determining monetary policy, and those that are not.

The former, which we denote as “policy factors,” are closely related to the yield curve be-

cause bond prices are crucially determined by expectations and risk assessments about the

short-term policy interest rate set by the central bank.8 These policy factors display little if

any evidence of unspanned macro variation. Other macro variables, “non-policy factors,”

are variables that monetary policymakers pay much less attention to when setting the

6 Our finding that plausible, small measurement errors is sufficient to generate the empirically

observed patterns of unspanned macro information stands in contrast to claims in the literature,

including JPS, Duffee (2013b), and Priebsch (2014). For example, JPS claim that “the spanning

property is independent of the issue of errors in measuring either bond yields or macro factors” (p.

1206). This claim ignores the fact that assessing the relevance of their statistical evidence depends

crucially on how the model fits the data, including the associated measurement error.

7 We come to a different conclusion in this regard from JPS because, as we explain in the paper,

they in fact compare an unspanned MTSM to a yields-only model rather than a spanned model.

8 These macro variables include measures of economic slack (such as the unemployment rate) and

measures of underlying inflation, which are the most relevant variables for setting the short-term

interest rate as identified from estimated monetary policy rules and the communications of monet-

ary policymakers.
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current short-term interest rate. The non-policy factors are the variables for which JPS and

Duffee (2013b) document low R2 in regressions on yields, which is not surprising, since

they are also widely found to be unimportant in estimated monetary policy rules. These re-

sults provide insight about unspanned macro variation based on the conduct of monetary

policy, which is a key link between macro variables and the yield curve.

The paper is structured as follows: Section 2 presents and discusses the conventional,

spanned macro-finance models, the spanning puzzle, and the unspanned models proposed

by JPS. In Section 3 we test the knife-edge restrictions of unspanned models and show that

they are rejected by the data. In Sections 4, 5, and 6 we assess whether the regression evi-

dence on unspanned macro variation, unspanned macro risk, and unspanned macro fore-

casts, respectively, can be reconciled with spanned MTSMs, using simulated data from

estimated models. In Section 7, we investigate the implications of macro-spanning for term

premia. Section 8 concludes.

2. Spanning in MTSMs

To lay the groundwork for our analysis, we first discuss the apparent conflict between con-

ventional macro-finance models and the regression evidence for unspanned macroeconomic

information. We also describe a new class of MTSMs recently proposed by JPS, which im-

poses knife-edge restrictions on the standard model in order to avoid theoretical macro-

spanning, and our specification and estimation of the models.

2.1 The Conventional Macro-Finance Model

Especially during the past decade, many studies have used a variety of different MTSMs—

both reduced form and equilibrium or structural models—to examine the dynamic inter-

actions among macroeconomic variables and interest rates of various maturities.

Essentially all of these models imply that macroeconomic risks are spanned by the yield

curve.

The model described here is representative of a broad class of MTSMs, including equi-

librium finance models and macroeconomic models. Our specification closely parallels the

formulation in Joslin, Le, and Singleton (2013b). Yields are collected in the vector Yt, which

contains rates for J different maturities. The risk factors that determine yields are denoted

Zt and include both yield factors and macro factors. We denote the M macro factors by

Mt. For the yield factors, we are free to choose any specific yields or linear combination of

yields. We write W for a ðJ � JÞ full-rank matrix that defines “portfolios” (linear combin-

ations) of yields, Pt ¼WYt, and we denote by Pj
t and Wj the first j yield portfolios and their

weights. We take the first L linear combination of yields, PLt , as the yield factors. We use

PCs of observed yields, and the corresponding loadings make up the rows of W. Hence,

there are N ¼ LþM risk factors, denoted Zt ¼ ðPL
0

t ;M
0
tÞ
0, all of which are observable.

All no-arbitrage term structure models have three components: an equation relating the

short-term interest rate to the risk factors, a time series model for the risk factors, and a dy-

namic specification for the risk factors under the risk-neutral pricing measure (or alterna-

tively, for a stochastic discount factor). The one-period interest rate is affine in the risk

factors:

rt ¼ q0 þ q1
0Zt ¼ q0 þ qP

0PLt þ qM
0Mt: (1)
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The risk factors are assumed to follow a Gaussian VAR under the risk-neutral probabil-

ity measure Q:

Zt ¼ lQ þ uQZt�1 þ ReQ
t ; eQ

t �
iid

Nð0; IN Þ: (2)

Under these assumptions, bond yields are affine in the risk factors,

Yt ¼ Aþ BZt ¼ Aþ BPPLt þ BMMt; (3)

where the affine loadings A and B are given in Appendix A. The time series model for Zt

(under the real-world probability measure) is a first-order Gaussian VAR9:

Zt ¼ lþ uZt�1 þ Ret; et �iid Nð0; IN Þ: (4)

2.2 The Spanning Puzzle

The model assumptions described above, which are representative of essentially all previous

macro-finance models, generally imply that the macro variables are spanned by (i.e., per-

fectly correlated with) the first N yield portfolios. To see this, premultiply Equation (3)

with an ðN � JÞ matrix, WN , to select N linear combinations of model-implied yields,

PNt ¼WNAþWNBZt. This equation can, outside of knife-edge cases, be inverted for Zt,

and in particular for the macro factors:

Mt ¼ c0 þ c1PNt : (5)

That is, Mt is a deterministic function of PNt , or equivalently of any other N linear com-

binations of yields.

While conventional macro-finance models theoretically imply that all relevant informa-

tion about the economy is captured by the current yield curve, there are three strands of re-

gression evidence suggesting otherwise. The first strand is a straightforward direct

examination of spanning that simply regresses macro variables on yields. If macro variables

are indeed spanned by yields, then this regression should have an R2 near one. The informa-

tion in yields is often considered well summarized by three PCs, so one regression specifica-

tion to examine this issue is

mt ¼ b0 þ b1
0PC

ð3Þ
t þ ut; (6)

where mt is one of the macroeconomic variables and PC
ð3Þ
t are the first three PCs

of observed yields. There is unspanned macro variation if the R2 in such regressions is

low. Evidence for unspanned macro variation is documented by JPS, Duffee (2013a),

and others. For example, in referring to these regressions, Duffee (2013b) finds that for

“typical variables included in macro-finance models, the R2s are on the wrong side of 1/2”

(p. 412). We will investigate the regression evidence on unspanned macro variation in

Section 4.

9 While there is some evidence that additional lags (Cochrane and Piazzesi, 2005; Joslin, Le, and

Singleton, 2013a) or moving average terms (Feunou and Fontaine, 2015) can be helpful to capture

yield dynamics, we stay in the class of first-order Markov models like the majority of the literature

on no-arbitrage MTSMs.
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A second implication of macro-spanning is that only current yield curve predicts excess

bond returns, because it completely captures the predictive power that macro variables may

have. Specifically, under macro spanning, b2 ¼ 0 in the predictive regression

rx
ðnÞ
t;tþ12 ¼ b0 þ b1

0PC
ð3Þ
t þ b2

0Mt þ utþ12; (7)

where rx
ðnÞ
tþ12 is a one-year holding-period excess return on a bond with n years maturity

and Mt contains one or more macro variables. Finding that b2 is significantly different from

zero is evidence for unspanned macro risk. Such evidence has been described by JPS,

Cooper and Priestley (2008), Ludvigson and Ng (2009), and others.10 We will consider this

type of evidence in Section 5.

A third implication of macro-spanning is that current yields completely capture the per-

sistence of macro variables. More precisely, in the regression

mtþ1 ¼ b0 þ b1
0PC

ð3Þ
t þ b2

0Mt þ ut (8)

macro spanning implies that b2 ¼ 0, meaning that macro variables have no predictive

power for future macro variables after conditioning on the current yield curve. However,

Duffee (2013a, 2013) provides strong evidence against b2 ¼ 0, which we term evidence for

unspanned macro forecasts. We revisit this evidence in Section 6.

In sum, there is regression evidence for unspanned macro variation, and this unspanned

variation does not appear to just be noise as it seems to help predict future bond returns

and macro variables. The apparent inconsistency between this tripartite regression evidence

of unspanned macro information and the predictions of the standard macro-finance model

constitute the spanning puzzle.

2.3 The Unspanned MTSM

We now turn to the alternative model that JPS proposed to address the spanning puzzle, a

new macro-finance model specification that incorporates unspanned macro risks.

For the short rate equation, instead of Equation (1), the unspanned model assumes that

the short rate depends only on the yield factors and not the macro factors:

rt ¼ q0 þ qP
0PLt þ 0M

0|{z}
qM
0

Mt: (9)

Furthermore, instead of Equation (2), the yield factors PLt follow an autonomous VAR

under Q that is independent of the macro factors:

PLt ¼ lQ
P0 þ uQ

PPPLt�1 þ 0L�M|fflffl{zfflffl}
uQ

PM

Mt�1 þ RPeQ
tP; eQ

tP �
iid

Nð0; ILÞ: (10)

That is, macro factors do not affect the risk-neutral expectations of future yield factors:

EQðPLtþhjZtÞ ¼ EQðPLtþhjPLt Þ; 8h:

10 However, Bauer and Hamilton (2016) argue that this evidence suffers from small-sample problems

and is therefore difficult to interpret. They suggest a bootstrap approach to testing whether span-

ning holds in the data.
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As a consequence of Equations (9) and (10), yields depend only on the yield factors but

not on the macro factors. That is, instead of Equation (3) with a full-rank loading matrix,

we have

Yt ¼ Aþ BPPLt þ 0M�M|fflfflffl{zfflfflffl}
BM

Mt: (11)

Equation (11) clarifies that in unspanned models, there is no direct link from macro fac-

tors to contemporaneous yields. This is a direct consequence of the “knife-edge

restrictions”11

qM ¼ 0M; uQ
PM ¼ 0L�M: (12)

Under the real-world measure, the VAR for Zt is the same as in the spanned model, given in

Equation (4). Since expectations of future yields/returns and of future macro variables are

not spanned by model-implied yields, macro variables can have additional predictive power

for both. Furthermore, the spanning condition (5) does not hold: one cannot back out the

risk factors Zt from model-implied yields, because the matrix WNB is singular and cannot

be inverted to yield Zt as a function of PNt . Instead of Equation (5), we have

Mt ¼ c0 þ cPPLt þOMt; (13)

(Equation (11) of JPS) where OMt captures the orthogonal macroeconomic variation

not captured by a projection on model-implied yields.

The zero loadings of model-implied yields on macro variables imply that there are no

direct effects of macro variables on interest rates. Instead, macro variables indirectly affect

yields through their correlation with the yield factors PLt . The component of macro vari-

ables that is uncorrelated with the yield factors, OMt, does not affect yields at all. A bond

yield is the sum of an expectations (risk-neutral) component and a term premium, hence if

shocks to OMt affect expectations of future short rates, they need to affect term premia

with exactly the same magnitude but with opposite sign, so that the two effects offset each

other and yields remain unchanged.

When comparing Equations (5) and (13) it may appear as though spanned models im-

pose a restrictive constraint while unspanned models allow for more flexibility. This, how-

ever, is incorrect. In fact, Equation (13) also holds in spanned models, since a projection on

L < N linear combination of yields cannot fully explain the macroeconomic variation and

naturally leaves an orthogonal projection residual. Because the risk factors are the same in

both models, c0 and cP are also identical across models, as is OMt.
12 In other words,

11 This feature parallels the models of unspanned volatility proposed by Collin-Dufresne and

Goldstein (2002) and others, where yields have zero loadings on volatility factors. Collin-Dufresne

and Goldstein (2002) speak of “knife-edge” parameterizations that give rise to unspanned volatility

factors, and Duffee (2013a) uses this term in the context of unspanned macro factors. Knife-edge

restrictions have the effect that the relevant factor loadings, which are determined by the model’s

parameters, end up being exactly zero. Bikbov and Chernov (2009) conduct an analysis of

unspanned stochastic volatility that is similar to our analysis of unspanned macro information.

12 JPS claim that conventional, spanned MTSMs impose that OMt in Equation (13) is zero (p. 1205).

But this statement is based on a comparison of spanned and unspanned models with a different

number of risk factors—for example, comparing an unspanned model with L ¼ 3 andM¼ 2 to a

spanned model with L ¼ 1 and M¼ 2. These models have different risk factors and vastly
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spanned and unspanned models have identical implications for projections of macro vari-

ables on L yield factors (e.g., level, slope, and curvature, when L ¼ 3).

The spanned model nests the unspanned model: If the knife-edge restrictions (12) are

imposed on the spanned model, we obtain the corresponding unspanned model in which

yields do not load on macro factors. For the spanned model with three yield factors and

two macro factors, eight zero restrictions are required to obtain the unspanned model. For

testing these knife-edge restrictions, one needs to account for the fact that additional par-

ameters are not identified under the null hypothesis, as we do below in Section 3.1.

The only way macro variables enter the unspanned model is as additional predictors in

the VAR in Equation (4), so that they affect real-world expectations of future interest rates

and term premia. Expanding the VAR parameters, we can write

PLt

Mt

 !
¼

lP0

lM0

 !
þ

uPP uPM

uMP uMM

 !
PLt�1

Mt�1

 !
þ Ret:

The L �M matrix uPM plays a crucial role, as it determines the effects of macro vari-

ables on expectations of yields. If it is restricted to zero, macro variables drop out com-

pletely from the model, as they then affect neither real-world nor risk-neutral expectations

of future yields. In that case we obtain a yields-only model, in which only PLt are the risk

factors. We see that the canonical spanned model nests the unspanned model, which in turn

nests the corresponding yields-only model. These nesting relations will be important to

understand and interpret the different likelihood-ratio tests of these models in Section 3.

2.4 Empirical Spanned and Unspanned MTSMs

We will assess the empirical relevance of spanning puzzle using estimated spanned and

unspanned models. We denote the spanned models by SMðL;MÞ, and the un-spanned

models by USMðL;MÞ. We focus on models with three yield factors and two macro fac-

tors, that is, the SM(3, 2) and USM(3, 2) models. However, all of our results were robust to

changes in the number of yield factors employed. In particular, we have estimated models

with one or two yield factors, and found our conclusions regarding the implications of

macro spanning and of knife-edge unspanned restrictions unchanged (see also the discus-

sion in Section 4.5).

Our models are estimated with yield data similar to that used by JPS and like them we

use monthly observations from January 1985 to December 2007. The mid-1980s start date

avoids mixing different monetary policy regimes (Rudebusch and Wu, 2007) while ending

the sample before 2008 avoids the recent zero-lower-bound episode, which is troublesome

for affine models (Bauer and Rudebusch, 2016). The yields are unsmoothed zero-coupon

Treasury yields, bootstrapped from observed bond prices using the Fama–Bliss method-

ology.13 The yield maturities are 3 and 6 months, and 1–10 years. To show the robustness

of our results, we estimate our models using two different sets of macroeconomic series.

The first set follows JPS and includes GRO, the 3-month moving average of the Chicago

Fed’s National Activity Index,14 and INF, which corresponds to survey expectations of

different economic implications and are not properly comparable. An appropriate comparison re-

quires spanned and unspanned models with the same risk factors.

13 We thank Anh Le for supplying these data.

14 This measure is constructed so that negative values indicate below-average economic growth

and positive values indicate above-average growth.
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inflation in the Consumer Price Index (CPI) over the coming year (from the Blue Chip

Financial Forecasts). The second set includes measures of economic activity and inflation that

are more standard in the context of monetary policy analysis. For economic activity, this is

the unemployment gap, UGAP, calculated as the difference between the actual unemploy-

ment rate and the estimate of the natural rate of unemployment from the Congressional

Budget Office (CBO), and for inflation this is year-over-year growth in the CPI excluding

food and energy prices, that is, core CPI inflation, which we denote by CPI. While INF and

CPI are highly correlated (with a correlation coefficient of 0.89), the two activity indicators

GRO and UGAP are essentially uncorrelated (with a correlation coefficient of �0.07). We

will discuss differences between the activity indicators in Section 4.1.

An important element for estimation of any term structure model is the choice of the

measurement error specification. Because a low-dimensional factor model cannot perfectly

match the entire yield curve, it is necessary to include measurement errors to avoid stochas-

tic singularity. We denote the observed yields ~Yt ¼ Yt þ et, where the J-vector et contains

serially uncorrelated Gaussian measurement errors. We assume that the errors on each ma-

turity have equal variance, r2
e , so that the likelihood tries equally hard to match yields of all

maturities. As in Joslin, Singleton, and Zhu (2011), Joslin, Le, and Singleton (2013b), JPS,

and other recent studies, we assume in our estimation that yield factors are observable,

which substantially simplifies estimation as no filtering is necessary.15 This assumption is

largely inconsequential for parameter estimates because filtered and observed low-order

PCs are very similar.16 The presence of measurement error has important implications for

the observability of the theoretical macro-spanning condition, as we will show in Sections

4–6.

As is usual in the macro-finance term structure literature, macroeconomic variables are

assumed to be observed without error. Notably, there are no macro measurement errors in

the (spanned) TSn models in Joslin, Le, and Singleton (2013b) and in the (unspanned) mod-

els in JPS. Of course, measurement errors for the macro variables would create further

unspanned macro variation and reinforce our resolution to the spanning puzzle. We do not

pursue this route because we want to challenge the spanned MTSM as much as possible

and investigate whether it can produce unspanned macro information for specifications

that are typical in this literature, which have no macro measurement errors and only small

yield measurement errors.

Estimation is carried out using maximum likelihood. Normalization assumptions are

needed for identification of the parameters in a no-arbitrage term structure model. For the

spanned model, we use the canonical form and parameterization of Joslin, Le, and

Singleton (2013b). This normalization is based on the idea that one can rotate the risk fac-

tors into PNt , and then apply the canonical form of Joslin, Singleton, and Zhu (2011). The

15 Our assumption ~P
L
t ¼ W L ~Y t ¼ W LYt ¼ PLt implies that W Let ¼ 0, so that et effectively contains

only J �L independent errors. If we denote by V an orthonormal basis of the nullspace of W L

(such that W LV 0 ¼ 0 and VV 0 ¼ IJ�L) the measurement error assumption is

Vet �iid Nð0;r2
eIJ�LÞ. The measurement error variance that maximizes the likelihood function is

therefore r̂2
e ¼

P
et
0et

T ðJ�LÞ :

16 JPS remark that “experience shows that the observed low-order PCs comprising [the yield fac-

tors] are virtually identical to their filtered counterparts in models that accommodate errors in all

PCs” (pp. 1206). See also Joslin, Le, and Singleton (2013b).
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fundamental parameters of the model are kQ, the eigenvalues of uQ, kQ
1, which determines

the long-run risk-neutral mean of the short rate, the spanning parameters c0, c1, the VAR

parameters l, u, and R, and the standard deviation of the measurement errors, re.
17 For the

unspanned model, we use the canonical form of JPS. In this case, the free parameters are

kQ
1; kQ, l, u, R, and re. The parameters kQ

1, l, u, and re can be concentrated out of the

likelihood function, and numerical optimization of the maximum likelihood is carried out

over the remaining parameters, of which there are thirty-two for SM(3, 2) and eighteen for

USM(3, 2).

Our model specifications do not impose any overidentifying restrictions, that is, they are

maximally flexible. An alternative is to impose restrictions on risk prices, which typically

improves inference about risk premia by making better use of the information in the cross

section of interest rates—for an in-depth discussion see Bauer (2016).18 In their estimation

of an MTSM with unspanned macro risks, JPS impose a number of zero restrictions on risk

price parameters, guided in their model choice by information criteria.19 We also conducted

our analysis after carrying out similar model selection exercises with very similar parameter

restrictions. However, including such restrictions did not affect our results because the re-

strictions mainly alter the VAR dynamics, which are not important for assessing macro

spanning. Therefore, to allow for an easy comparison across different models—including

spanned and unspanned macro-finance models as well as yields-only models—we focus ex-

clusively on maximally flexible models.

We report individual parameter estimates in Appendix B, and focus here on the cross-

sectional fit of the models. Table I reports root-mean-squared errors (RMSEs), calculated

for selected individual yields as well as across all yields, as well as estimates for the standard

deviation of the yield measurement errors, r̂e. All four models fit yields well, with fitting

errors on average around five to six basis points.20 The accurate fit of our models is due to

the fact that the three yield factors well capture the variation in the yield curve (Litterman

and Scheinkman, 1991). The spanned models achieve a slightly better fit because the macro

variables can capture some additional yield variation, but these improvements are small in

economic terms. Our spanned models fit the yield curve notably better than those in Joslin,

Le, and Singleton (2013b) or Joslin, Le, and Singleton (2013a), which allow for only one or

two yield factors.

3. Testing Knife-Edge Restrictions

We now carry out likelihood ratio tests of the restrictions of unspanned MTSMs. The use

of unspanned MTSMs is typically motivated and justified only on the basis of indirect re-

gression evidence for unspanned macro information (see JPS, Wright (2011), and Priebsch

17 The parameters q0, q1, lQ , and uQ are determined by the fundamental parameters according the

mapping provided in Appendix A of Joslin, Le, and Singleton (2013b).

18 Estimating models with short samples of highly persistent interest rate data can result in a small-

sample parameter bias. To address this problem, one can take advantage of the information in the

cross section of interest rates with plausible restrictions on risk pricing, as in Bauer (2016) and

JPS, or directly adjust for the small-sample bias, as in Bauer, Rudebusch, and Wu (2012).

19 In addition, they restrict the largest eigenvalue of u to equal the largest eigenvalue of uQ .

20 The two unspanned models achieve the exact same fit to the yield curve because the yield factors

are the same and macro variables do not enter into the bond pricing.
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(2014), among others). In contrast, we conduct direct hypothesis tests of the knife-edge

unspanned macro restrictions that underlie these models.21

3.1 Model-Based Tests

We first test the knife-edge restrictions that model USM(3, 2) imposes on model SM(3, 2),

described in Section 2.3. The log-likelihood values for these two models are shown in

Table II for the two different data sets with macro variables GRO/INF and UGAP/CPI. For

both data sets, the spanned models fit the data substantially better than the unspanned

ones, as reflected in the larger log-likelihood values. A separate comparison of the two com-

ponents of the log-likelihood for cross-sectional fit (based on measurement errors) and for

time series fit (based on VAR forecast errors) reveals that the improved fit is almost exclu-

sively due to smaller yield fitting errors. The knife-edge restrictions barely affect the VAR

dynamics—only R changes slightly while l and U are unchanged—but they do affect how

well the models fit observed yields: Allowing the macro variables to enter as risk factors in

the yield Equations (3) reduces the fitting errors of the models (see also Table I). While the

improvements in cross-sectional fit are modest relative to the magnitude and variability of

yields, they are substantial in the sense that they translate into large increases in the log-

likelihood value.22

The last row of each panel of Table II reports the values of the likelihood-ratio test stat-

istics. The null hypothesis imposes eight parameter restrictions, given in Equation (12), but

some additional parameters are not identified under the null. Under the knife-edge restric-

tions, bond prices are not directly linked to macro variables and hence the risk-neutral dy-

namics of Mt are not identified. The canonical unspanned model has fourteen fewer

parameters, which means that six parameters are not identified under the null. We cannot

simply compare the values of the likelihood-ratio test statistics to the critical values of a v2-

distribution with eight degrees of freedom, since the usual regularity conditions for the

Table I. Cross-sectional fit of spanned and unspanned MTSMs

This table presents the root-mean-squared fitting errors (RMSEs) for four different MTSMs in

annualized basis points across all maturities and for selected individual maturities, as well as

the estimated standard deviation of the yield measurement errors, r̂e , which by construction

equals the RMSE times
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J=ðJ � LÞ

p
.

Model Macro variables r̂e All 3 m 6 m 1 y 2 y 3 y 5 y 7 y 10 y

SM(3, 2) GRO, INF 5.7 5.0 5.1 4.6 6.8 3.6 3.9 5.4 4.2 6.3

SM(3, 2) UGAP, CPI 6.2 5.4 5.9 4.6 7.3 3.8 4.8 6.1 4.4 7.4

USM(3, 2) GRO, INF 6.6 5.7 6.1 4.8 8.4 4.2 4.7 6.1 4.5 7.7

USM(3, 2) UGAP, CPI 6.6 5.7 6.1 4.8 8.4 4.2 4.7 6.1 4.5 7.7

21 Chernov and Mueller (2012) test in an MTSM whether the yield loadings of a partially hidden latent

factor are significantly different from zero. In contrast, we directly test the assumption of

unspanned macro factors.

22 In models with one or two yield factors, as in Joslin, Le, and Singleton (2013b) and Joslin, Le, and

Singleton (2013a), the inclusion of macro variables leads to even more substantial improvements

in cross-sectional fit.
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validity of the asymptotic v2-distribution are not satisfied, and the limiting distribution is

non-standard (Hansen, 1996). One possible way to address this problem is to approximate

the small-sample distribution of the test statistic using bootstrap simulations. But such a

procedure would require re-estimating our macro-finance models many times on simulated

data sets, which is computationally very costly.

Fortunately, there is a much simpler way to calculate how significant the improvements

in the log-likelihood function are.23 We can come up with conservative critical values for

the test statistics based on the insight that every MTSM can be viewed as a restricted ver-

sion of a reduced-form factor model. MTSMs restrict the loadings of yields on the factors

to be consistent with no-arbitrage, whereas factor models leave these loadings unre-

stricted.24 Consider the reduced-form model corresponding to SM(3, 2), which consists of a

VAR for Zt and J � L non-trivial measurement equations.25 We denote this reduced-form

spanned model by RSM(3, 2). Our spanned and unspanned models are restricted versions

of RSM(3, 2), in which the loadings of yields on Zt satisfy no-arbitrage conditions. In par-

ticular, USM(3, 2) has fifty less parameters than RSM(3, 2), because RSM(3, 2) has meas-

urement equations with ðJ � LÞð1þNÞ ¼ 54 free loadings, while in USM(3, 2) these

loadings are determined by just 1þ L ¼ 4 structural parameters. We could test the plausi-

bility of these fifty restrictions using a likelihood-ratio test—denote the value of the test

statistic by LR1. Our real goal is to test the restrictions of USM(3, 2) versus SM(3, 2)—de-

note the value of this test statistic by LR2. Because RSM(3, 2) is more general than SM(3,

2), we know that LR2 < LR1. We also know that under the null LR1 has an approximate

Table II. Tests of knife-edge restrictions in MTSMs.

For each pair of MTSMs, the table presents the log-likelihood (LLK)

values for spanned and unspanned MTSMs—SM(3, 2) and USM(3,

2), respectively—and the likelihood-ratio statistic that USM(3, 2) is

an acceptable restricted version of SM(3, 2). The first two columns

report the contribution to the log-likelihood of the cross-sectional

fitting errors and the VAR forecast errors. The 5% (0.1%) critical

value for a v2ð50Þ-distributed random variable is 67.5 (86.7).

Cross section Time series Total

GRO/INF models

LLK SM(3, 2) 21,109 393 21,502

LLK USM(3, 2) 20,781 392 21,173

Likelihood-ratio statistic 658

UGAP/CPI models

LLK SM(3, 2) 20,906 431 21,337

LLK USM(3, 2) 20,780 429 21,210

Likelihood-ratio statistic 254

23 This was pointed out to us by Jim Hamilton.

24 This connection was emphasized and used for estimation of term structure models by Hamilton

and Wu (2012). Simple factor models for the yield curve were used, for example, by Duffee (2011a)

to model and forecast bond yields.

25 J model-implied yields are linearly determined by the factors in Zt, with measurement errors, but

L linear combinations of yields are observed without error.
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v2-distribution with 50 degrees of freedom. Therefore, we can evaluate our test statistics

LR2 against the critical values of a v2ð50Þ-distribution, and be sure that this is a conserva-

tive test. The 5% (0.1%) critical value for this distribution is 67.5 (86.7), and consequently

we strongly reject the knife-edge restrictions with minuscule p-values.

3.2 Model-Free Tests

Instead of comparing no-arbitrage MTSMs with and without the knife-edge unspanned

macro restrictions, we can alternatively test these restrictions in reduced-form factor models

for yields. In particular, we can simply estimate models RSMðL;MÞ using ordinary least

squares (OLS) and test whether the loadings on the macro variables are zero using

likelihood-ratio statistics. In addition to its simplicity, the obvious advantage of this proced-

ure is that it does not rely on a particular choice of MTSM specification.

The factor model RSMðL;MÞ consists of a VAR for Zt ¼ ðPLt 0;Mt
0Þ0 and measurement

equations relating observed yields to Zt. We estimate models with L ¼ 1; . . . ;5 yield factors

and M¼ 2 macro factors. The factors in PLt are taken to be the first L PCs of observed

yields, as in the MTSMs described in Section 2.4. The measurement equations are

P�Lt ¼ A� þ B�PPLt þ B�MMt þ ut; (14)

where P�Lt contains the remaining J � L PCs of observed yields ~Yt, and ut is a (J � L) iid

vector of measurement errors with covariance matrix X. We can calculate the likelihood-

ratio test statistic for the restriction B�M ¼ 0 as follows: First, we estimate the unrestricted

model using OLS, obtain the residuals ût, and calculate X̂1 ¼ T�1
PT
t¼1

ûtût
0. Second, we esti-

mate the constrained model by dropping Mt from Equation (14), and estimate the residual

covariance matrix X̂0. The likelihood ratio statistic, using Sims’ small-sample correction

(see Hamilton, 1994, eq. 11.1.34), is LR ¼ ðT � 1� L�MÞðlog jX̂1j � log jX̂0jÞ and has

an approximate v2-distribution with degrees of freedom equal to the number of parameter

restrictions, ðJ � LÞM. Note that since the VAR for Zt is unaffected by the restrictions,

there is no need to estimate it for calculation of the LR statistic.

Table III shows that for both macro data sets, and for any number of yield factors, the

LR statistics are always substantially larger than the 0.1%-critical values. These model-free

tests very clearly reject the knife-edge restrictions, and suggest that it is beneficial to include

macro variables as factors explaining cross-sectional variation in yields.

To better understand these results we can go one step further and consider the role of

each macro variable for these rejections. We estimate restricted versions of Equation (14)

where we drop only one macro variable at a time. The resulting LR statistics are reported

in the right panel of Table III. For the GRO/INF data set, both macro variables are indi-

vidually as well as jointly highly significant. For the UGAP/CPI data, the same is true for up

to three yield factors, but beyond that UGAP is only marginally significant or insignificant.

The likely reason is that UGAP is closely correlated with the slope of the yield curve, as we

discuss further below. More generally, however, we conclude that the rejections are not pri-

marily driven by only specific macro variables—exclusion restrictions are typically rejected

for any of the considered macro risk factors.

Our evidence casts doubt on the validity of the restrictions imposed by unspanned

macro-finance models. The statistical significance of the rejections is very high.26 At the

26 We have also calculated Wald test statistics that allow for the possibility of serial correlation in ut

(using Newey-West covariance estimation) and have obtained very similar results.
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same time, however, the rejections of the knife-edge restrictions do not have high economic

significance, as macro variables explain only little cross-sectional variation in the yield

curve beyond that explained in the first three PCs of yields. We will revisit the issue of eco-

nomic significance in Section 7, where we compare estimated term premia obtained from

spanned and unspanned models.

3.3 Do JPS Reject Spanned Models?

On the surface, our results contradict the test result in JPS (p. 1214) that appears to show a

spanned MTSM rejected in favor of an unspanned MTSM. Just as puzzling is the fact that

JPS test the spanned model as a restricted version of the unspanned model, which is pre-

cisely the opposite of the specification nesting demonstrated above. Here we reconcile these

differences and reinterpret the test result in JPS.

JPS compare an unspanned MTSM, labeled “Mus,” to a restricted model “Mspan,” in

which the block of the u matrix corresponding to the lagged macro variables is set to zero.

Their likelihood-ratio test strongly rejects the restricted model, with a reported v2-statistic

of 1,189. However, the restrictions ofMspan do not imply a spanned MTSM. Instead, since

Mspan restricts uPM and uMM to zero, it effectively corresponds to a yields-only model (see

Section 2.3).27 The only difference betweenMspan and a pure yields-only model is that the

former includes two VAR equations for forecasting macro variables using yield factors, and

its likelihood function includes the corresponding macro forecast errors. But for yields and

risk premia,Mspan and a yields-only model have the exact same observational implications.

The correct interpretation of the likelihood-ratio test in JPS is that in their specific macro-

finance data set including GRO and INF, yields-only models are rejected in favor of macro-

finance models, whether they are spanned or unspanned MTSMs. Importantly, this is not a

rejection of spanned MTSMs.

Table III. Tests of knife-edge unspanned macro restrictions in reduced-form regressions.

The left panel shows the values of likelihood-ratio test statistics for the null hypothesis that

macro variables have zero loadings in the system of cross-sectional regressions of yields

on risk factors. The explanatory variables in the unrestricted regression are L PCs of yields

and two macro variables. The dependent variables are the remaining J � L PCs of yields, with

J ¼ 12 the number of yield maturities. The test statistics have an asymptotic v2-distribution

with 2ðJ � LÞ degrees of freedom, and the table shows the corresponding 0.1%-critical values

(c.v.). The right panel shows test results for individually restricting the loadings on macro vari-

ables to zero, in which case the degrees of freedom are J � L.

L GRO/INF UGAP/CPI 0.1% c.v. GRO INF UGAP CPI 5% c.v. 0.1% c.v.

1 559.6 375.7 48.3 140.5 358.7 140.4 233.1 19.7 31.3

2 248.3 338.9 45.3 138.2 80.9 139.5 196.9 18.3 29.6

3 119.6 199.7 42.3 48.9 67.0 50.8 143.7 16.9 27.9

4 113.7 81.2 39.3 48.7 61.4 15.3 65.3 15.5 26.1

5 89.8 76.5 36.1 46.3 42.3 15.2 60.7 14.1 24.3

27 The restrictions ofMspan do not imply macro-spanning as in Equation (5) but instead that expect-

ations of macro variables are spanned by yields.
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In the data used by JPS, current yields do not completely capture the relevant informa-

tion for forecasting, as macro variables have additional predictive power.28 This statistical

rejection of model Mspan is simply a reflection of the regression evidence for unspanned

macro risks and unspanned macro forecasts in GRO and INF. In Sections 5 and 6 we will

show that such regression evidence is consistent with both spanned and unspanned

MTSMs.

4. Empirical MTSMs and Unspanned Macro Variation

In Section 2.2, we described three strands of regression evidence for unspanned macro in-

formation that appear to reject spanned macro-finance models. We now investigate

whether this regression evidence can discriminate between spanned and unspanned

MTSMs. In this section, we focus on the evidence for unspanned macro variation, based on

regressions of the form in Equation (6).

4.1 Macro Data and the Distinction between Levels and Growth

For robustness, we consider ten different macroeconomic inflation and economic activity

variables. Our sample period, which coincides with that used by JPS, extends from January

1985 to December 2007. Our measures of inflation include INF, the survey-based measure

used by JPS, as well as CPI (defined in Section 2.4), and year-over-year growth in the

Personal Consumption Expenditure (PCE) Price Index excluding food and energy prices,

that is, core PCE inflation.29

Regarding the activity measures, we include measures of the level and the growth of ac-

tivity in the US economy, which differ greatly. Level measures capture deviations of eco-

nomic activity from the full-employment or potential level of activity. That is, they measure

the degree of slack in the economy. Our preferred measure of slack is the unemployment

gap (UGAP). As a second measure of slack, we consider the output gap, measured as the

difference between the log-level of GDP and the log-level of potential GDP as estimated by

the CBO.30 We consider five measures of growth in economic activity: GRO, the measure

used by JPS; growth of monthly real GDP, smoothed by using either a 3-month moving

average (ma3) or year-over-year (yoy) growth rates; growth of industrial production; and

growth of nonfarm payroll employment (the last two are measured as 3-month moving

averages).

Level and growth indicators are essentially uncorrelated with each other over the busi-

ness cycle. For example, just after a recession ends, growth will turn positive and even shift

above trend while the level of output and employment remains depressed. Importantly, the

empirical monetary policy rules literature has identified level rather than growth variables

28 The extremely large v2-statistic that is reported by JPS is mostly driven by unspanned macro fore-

casts: If one does not zero out own lags of macro variables in u the v2-statistic is only 74 for the

model of JPS.

29 In contrast to core inflation, headline inflation, which includes volatile food and energy prices, is

noisy and displays a much weaker link to monetary policy actions and interest rates. A focus on

core inflation is consistent with the statements of monetary policymakers.

30 To obtain monthly numbers for GDP, we use monthly estimates from Macroeconomic Advisers

starting in 1992, and quarterly GDP data from the Bureau of Economic Analysis (BEA) interpolated

to monthly values before 1992.
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as the ones most important for central banks in setting the short-term interest rate.31 To see

this difference, we estimate standard policy rules that regress the federal funds rate on pairs

of macro variables. Each economic activity indicator that we consider is paired with CPI,

whereas the inflation measures are each paired with UGAP. The first two columns of

Table IV report the R2 for these policy rules, and the partial R2 for each macro variable

under consideration (i.e., its explanatory power of a given macro variable in the policy rule,

controlling for the effect of the other variable). The R2 in the first column can be compared

with the R2 in univariate regressions of the policy rate on CPI, which is 0.51, and on

UGAP, which is 0.17.

Level indicators (i.e., measures of slack) are important determinants of monetary policy

as demonstrated by their high explanatory power in simple policy rules. When paired with

core CPI, they achieve an R2 of 0.80. In contrast, growth measures do not show a close as-

sociation with the policy rate. In particular, with GRO, the policy rule R2 barely edges up

to 0.53 (compared with the R2 of 0.51 for the univariate fed funds rate regression on infla-

tion). Those variables that appear to drive monetary policy we term “policy factors.”

Those variables—notably the growth variables—that display only a weak direct relation-

ship with the policy rate we term “non-policy factors.” Note that all three inflation meas-

ures are very closely linked to the policy rate, giving R2 values ranging from 0.74 to 0.80,

and are therefore included in our set of policy factors. The partial R2 estimates using the

policy factors are all 0.60–0.70, whereas the partial R2 estimates using the non-policy fac-

tors are at most 0.20. This sharp difference clearly shows the dichotomy between the policy

and non-policy variables.

4.2 Regression Evidence for Unspanned Macro Variation

To measure how much macroeconomic variation is captured by the yield curve, we regress

each of the ten macroeconomic variables on the first three PCs of yields—see Equation (6).

The R2 estimates from these regressions, displayed in the third column of Table IV, show

that most of the variation in each of the policy factors is explained by the yield curve, with

R2 values from 0.60 to 0.70. This is true for measures of slack as well as for core inflation

measures. In contrast, only a small portion of the variation in non-policy factors, including

GRO, is captured by yields—the R2 estimates are all below 0.30.32

To help uncover how the yield curve captures macro variation, the last three columns of

Table IV report R2’s for univariate regressions of macro variables on each yield PC separ-

ately. As usual, the first three PCs correspond to level, slope, and curvature of the yield

curve. Measures of slack are most closely correlated with the slope of the yield curve, while

inflation measures are mainly correlated with the level. In contrast, growth measures are

correlated most strongly with the curvature. Given that the curvature accounts for only a

31 Notably, the Taylor rule uses a levels output gap and not a growth rate. More generally, the use of

core CPI and the unemployment gap are supported by estimated monetary policy rules and by the

statements of monetary policymakers. See, among many others, Taylor (1999), Orphanides (2003),

Bean (2005), and Rudebusch (2006). The low weight on growth in monetary policy rules can also

be optimal (e.g., Rudebusch, 2002).

32 We find that 28% of the variation in GRO is explained by the first three PCs of yields, whereas JPS

estimate only 15%. The difference is due to the fact that we use a somewhat different yield data

set.
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small, noisy portion of yield curve variation, this correlation with growth variables could

be a sign of overfitting and the tenuous relationship between yields and growth measures.

To further document these differing correlations, Figure 1 provides an expanded and re-

interpreted version of figure 2 in JPS, which showed that the three yield PCs had weak cor-

relations with GRO. Our Figure 1 shows the second PC of yields (the slope of the yield

curve), GRO, and UGAP, with all three series standardized to have zero mean and unit

variance. This figure illustrates the crucial difference between level/gap measures (policy

factors) and growth measures (non-policy factors). The strong comovement of UGAP and

the yield slope is very clear—the correlation coefficient is 0.84. In other words, this policy

factor is closely related to (i.e., essentially spanned by) the yield curve. On the other hand,

GRO is basically uncorrelated with the slope.

What emerges from this evidence is an explanation for the source of spanned and unspanned

macro variation that is based on the monetary policy reaction function, which provides a sys-

tematic link between certain macroeconomic variables and interest rates.33 Policy factors—

those macro variables that subtantially drive monetary policy—show very little evidence for

unspanned macro variation, and are essentially spanned by the yield curve. This is true for

measures of resource slack and for core inflation. On the other hand, the non-policy factors—

Table IV. Monetary policy rules and unspanned macro variation

The first two columns report monetary policy rule regressions in which each economic activity

measure (variables 1, 2, 6–10) are paired with Core CPI inflation (which has a univariate R2

¼ 0:51 in the rule regression) and the inflation measures (variables 3–5) are paired with the un-

employment gap (univariate R2 ¼ 0:17). The first column shows the R2 of these bivariate regres-

sions, and second column shows the partial R2 for each macro variable. The last four columns

document whether yields span macro variables by providing four R2 for the regression of each

macro variable on the three PCs of yields—denoted level, slope, and curvature—jointly and one

at a time.

Policy rule Macro-spanning R2

R2 Partial Joint Level Slope Curvature

Policy factors

1) Unemp. gap 0.80 0.59 0.72 0.01 0.67 0.04

2) Output gap 0.79 0.58 0.57 0.01 0.45 0.10

3) INF (JPS) 0.75 0.71 0.81 0.74 0.03 0.04

4) Core CPI inflation 0.80 0.76 0.81 0.67 0.04 0.10

5) Core PCE inflation 0.74 0.68 0.77 0.60 0.05 0.12

Non-policy factors

6) GRO (JPS) 0.53 0.05 0.28 0.01 0.00 0.27

7) GDP growth (ma3) 0.52 0.02 0.14 0.01 0.01 0.12

8) GDP growth (yoy) 0.51 0.01 0.20 0.00 0.00 0.19

9) IP growth (ma3) 0.60 0.20 0.32 0.14 0.02 0.16

10) Jobs growth (ma3) 0.61 0.20 0.20 0.04 0.01 0.15

33 This is consistent with the findings in Diebold, Rudebusch, and Aruoba (2006) and Rudebusch and

Wu (2008) in which the central bank adjusts the short rate and the slope of the yield curve in re-

sponse to cyclical fluctuations in resource utilization, and the level of the yield curve adjusts to

changes in inflation expectations and the perceived central bank inflation target.
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and specifically, growth variables—display a weak relationship with the policy rate and, conse-

quently, also exhibit significant unspanned variation. This reflects the low weight these vari-

ables appear to have in the Fed’s decisions on how to set the short-term interest rate.34

4.3 Simulating Data from Empirical MTSMs

To examine the statistical relevance of the spanning puzzle, we use the empirical

spanned and unspanned models that we estimated as described in Section 2.4, and generate

simulated data samples. We then estimate the three spanning regressions using these simu-

lated samples, and assess whether spanned models can reproduce the regression evidence in

the actual data or are rejected by that evidence. In addition to these small-sample simula-

tions, we also calculate and report population moments for each of the regressions in

Appendix C.

Our simulation design is the following: With parameter estimates for four different

MTSMs in hand—SM(3, 2) and USM(3, 2), each for two different macro data sets—we

simulate 10,000 macro/yield data sets from each model. The simulated data sets have the

same length as the actual data, which is T¼ 276 months. Our procedure is to simulate

yield and macro factors from the VAR, construct fitted yields using the affine factor load-

ings, and add iid Gaussian measurement error to obtain simulated yields.35 The standard

deviation of the measurement errors, r, is taken to be equal to six basis points, similar to

our maximum-likelihood estimates reported in Table I. We also consider the case with
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Figure 1. Slope of the yield curve and macroeconomic variables.

This figure plots the slope of the yield curve, which is measured as the second PC of yields; UGAP,

which is the unemployment gap; and GRO, which is the economic growth indicator used by Joslin,

Priebsch, and Singleton (2014). All variables are standardized to have mean zero and unit variance.

34 Our arguments suggest that growth measures of economic activity would be related more strongly

to changes than to levels of the yield curve. We have found that this is indeed the case. For example,

a regression with quarterly changes in three PCs explains 42% of the variation in GRO, as opposed

to the 28% that Table IV reports for a specification in levels. This underlines the importance of using

the right type of macro variables when investigating spanning by the yield curve.

35 Pricing errors of estimated term structure models are often serially correlated, as documented for

example by Adrian, Crump, and Moench (2013) and Hamilton and Wu (2014). However, using seri-

ally correlated errors in our simulations did not change our results.
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r¼ 0.36 In each simulated yield data set, we construct the PCs using the loadings in W.

Then we run the spanning regressions in the simulated macro/yield data, in order to obtain

the model-based distribution of the regression statistics. By comparing the regression statis-

tics obtained in the actual data to these distributions, we can then test whether the assump-

tions of the model are consistent with the unspanned regression evidence.

4.4 Spanned MTSMs Are Consistent with Regression Evidence

We first run regression (6) in both actual and simulated data samples. Table V reports the

R2 for regressions using the actual data in the top two rows, with either three or five PCs of

yields, which provide the comparison benchmark for the model-based simulated R2 distri-

bution. As noted above, GRO exhibits much unspanned variation, while UGAP and both

inflation measures are largely spanned by yields. The remaining rows of Table V show re-

sults for simulated data, namely, medians of the R2 across simulations, as well as the frac-

tions of simulated samples in which the R2 is below the value in the actual data. These

fractions can be interpreted as model-based, small-sample p-values for the joint restrictions

imposed by the MTSM, and using the conventional significance level, values below 0.05

would indicate evidence against a particular model.

First, we consider regressions of macro variables on five PCs using data simulated from

the spanned model SM(3, 2)—these results are in the bottom panel of Table V. The model

has five factors, so five (linear combinations of) model-implied yields completely span the

macro variation. Hence, when we simulate yields without measurement error and regress

macro variables on five PCs, we find an R2 of 1 in every simulated data set (the final two

lines in the table with r¼ 0). In this case the model cannot reproduce any unspanned macro

variation and appears inconsistent with the data. However, adding small, plausible yield

measurement error changes this conclusion: With r ¼ 6bps the amount of unspanned

macro variation in the simulated data matches that in the actual data, and the p-values are

substantially above five percent, so the spanned model cannot be rejected.

Of course, it is not surprising that with some amount of measurement error, a spanned

model has data-generating properties that are consistent with the data-generating proper-

ties of an unspanned model. Indeed, with enough stochastic variation, any two economic

models are indistinguishable. But our results show there is an empirically plausible spanned

model, with the usual, tiny yield measurement error, that cannot be distinguished from the

corresponding estimated unspanned version using the spanning regression. These results

certainly depend on the specific models and samples employed, but we have explored a var-

iety of alternative specifications with different variables, numbers of factors, and parameter

restrictions and obtained similar results.

Theoretical spanning only holds if the number of PCs in the spanning regression is at

least as large as the number of risk factors. For SM(3, 2), regressions using only three PCs

of simulated yields give R2’s that are well below 1 and close to values in the actual data

even without any measurement error, as shown in the middle panel of Table V. Evidently,

even in a spanned MTSM with three yield factors, which fits the yield curve well, three PCs

of yields leave a substantial amount of macro variation unspanned. This further lessens the

significance of the theoretical spanning condition: spanned models do not impose that

36 In the estimation we assumed observable yield factors, whereas in our simulations all yields are

measured with error. This is inconsequential for our results, as filtered and observed low-order

PCs are virtually indistinguishable (see footnote 16).
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macro variables are spanned by L PCs of yields. Only when we include higher-order PCs,

that is, condition on N linear combinations of yields, does the spanning condition in con-

ventional MTSMs have testable implications. But higher-order PCs have less explanatory

power for the cross section of yields and are measured much more imprecisely.

Finally, we consider the unspanned models, USM(3, 2), in the top panel of Table V. In

this case, we use three PCs of yields, because only the three yield factors enter the affine

yield equations—including more PCs does not increase explanatory power of yields but

leads to multicollinearity. The results of this exercise show, not surprisingly, that the

unspanned models are able to replicate the unspanned macro variation in the data. But note

that both spanned and unspanned models have the same implications for the relationship

between macro variables and L linear combinations of yields, because Equation (13) holds

in both types of models. Therefore, the results reported in the top panel of Table V are es-

sentially identical to those in the middle panel. Based on spanning regressions on L yield

PCs, there is no evidence to distinguish between spanned and unspanned models.

In Appendix C, we consider large-sample results for the spanning regressions based on

model-implied population moments, which provides further detail and intuition. For unspanned

macro variation, the small-sample simulation results are confirmed by the population moments.

4.5 The Role of Measurement Error

Measurement error plays a crucial role for reconciling spanned models with the evidence

from regressions of macro variables on five yield PCs. Yield-curve models generally require

measurement error to fit the data, because their factor structure otherwise would lead to

stochastic singularity. For macro-finance models, measurement error has the additional

Table V. Unspanned macro variation in MTSMs

This table documents unspanned macro variation in actual data and in data that are simulated

from MTSMs, measured by the R2’s from regressions of macro variables on contemporaneous

yield PCs. Low R2 indicate a large degree of unspanned macro variation. The first two rows

show results for the actual data while the rest of the table reports median R2 across simulations

and in square brackets the fractions of the simulated samples in which the R2 is below the value

in the actual data (that is, p-values). We simulated 10,000 artificial data samples in each case.

GRO INF CPI UGAP

Data 3 PCs 0.28 0.81 0.81 0.72

5 PCs 0.38 0.86 0.81 0.75

USM(3, 2) 3 PCs r ¼ 6bps 0.31 0.74 0.68 0.71

[0.38] [0.72] [0.82] [0.53]

r ¼ 0bps 0.32 0.74 0.69 0.71

[0.35] [0.72] [0.81] [0.53]

SM(3, 2) 3 PCs r ¼ 6bps 0.31 0.72 0.68 0.72

[0.39] [0.79] [0.83] [0.51]

r ¼ 0bps 0.32 0.72 0.68 0.72

[0.34] [0.79] [0.81] [0.51]

SM(3, 2) 5 PCs r ¼ 6bps 0.51 0.83 0.68 0.74

[0.10] [0.68] [0.82] [0.54]

r ¼ 0bps 1.00 1.00 1.00 1.00

[0.00] [0.00] [0.00] [0.00]
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important effect that it breaks theoretical macro spanning, just as it breaks stochastic singu-

larity. While this is obvious conceptually, our analysis shows that it also works empirically:

The small amount of measurement error needed to fit observed yields at the same time also

generates sufficient unspanned macroeconomic information to reconcile macro-finance

models with the spanning regression evidence.

It may appear puzzling that a large amount of unspanned macro information can be

generated by very small measurement errors. After all, “the measurement error of yields is

tiny relative to the variability of yields” (Duffee, 2013b, p. 412). Furthermore, low-order

PCs of observed yields are generally very close to low-order PCs of model-implied yields.

The reason that spanned models with small measurement errors can generate substantial

amounts of unspanned macro information is that measurement error matters little for level,

slope, and curvature, but substantially affects higher-order PCs, since these are relatively

smaller and less precisely estimated. In Appendix D we report the share of the variance in

each PC that is due to measurement error. This share is large for the higher-order PCs, for

example, it is about 99% for the fifth PC. The higher-order yield PCs matter for theoretical

macro-spanning, but they are contaminated by noise with the introduction of even of small

yield measurement error.

While the results and analysis in this paper pertain to MTSMs with three yield factors,

we have found that spanned models with fewer yield factors also reproduce the regression

evidence on unspanned macro information. For models with two yield factors, as in Joslin,

Le, and Singleton (2013a), the intuition is similar to the case of SM(3, 2), because the yield

fit is reasonable and the measurement error modest. For MTSMs with only one yield factor,

like those in Bernanke, Reinhart, and Sack (2004) and Joslin, Le, and Singleton (2013b),

the fit to the cross section of yields is much poorer and large measurement errors are

required, which in turn generate substantial unspanned macroeconomic information. That

is, both reduced-form MTSMs that fit yields very well and have small measurement errors,

as well as models that do not match observed yields very accurately, are consistent with the

regression evidence on unspanned macro variation.

5. Empirical MTSMs and Unspanned Macro Risk

We now consider whether macroeconomic variables contain information that is useful for

predicting excess bond returns, above and beyond the information contained in the yield

curve. That is, does the unspanned macro variation represent unspanned macro risk? We

use predictive regressions of the form in Equation (7), using the average excess returns for

bonds of maturities from 2 to 10 years as the dependent variable. Then we investigate

whether this evidence rejects spanned MTSMs.

5.1 Regression Evidence for Unspanned Macro Risk

We first provide the regression evidence on unspanned macro risk using as predictors the

first three PCs of yields and each of our ten macroeconomic variables. The first and second

columns of Table VI show t-statistics and p-values for testing the hypothesis that the macro

variable can be excluded from this regression, using Newey–West standard errors with

eighteen lags.37 The third column reports the increase in R2 when including macro

37 This is the usual lag choice for predictive regressions for annual returns with overlapping monthly

observations—see, for example, Cochrane and Piazzesi (2005) and Ludvigson and Ng (2009).
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variables, relative the R2 in predictive regressions with only three yield PCs, which is 20%.

The fourth column shows the relative RMSE of the predictions that include the macro vari-

able compared with those that use only yield PCs—values below one indicate improve-

ments of forecast accuracy due to inclusion of macro information. While the t-tests indicate

statistical significance, the changes in R2 and the relative RMSEs measure the economic sig-

nificance of unspanned macro information for predicting excess bond returns.

Measures of economic slack do not help to predict bond returns in our data.38 The same

holds true for core inflation measures. In general, we find that the policy factors—those

variables that display little unspanned variation—do not significantly improve forecast ac-

curacy. This is not surprising because the policy factors contain very little independent in-

formation. On the other hand, four out of five non-policy factors display in-sample

predictive power that is significant at least at the 10% level. As for the regressions on

Table VI. Unspanned macro risk and unspanned macro forecasts

The first four columns assess unspanned macro risk via the predictive power of macro vari-

ables for one-year excess bond returns. The first and second columns show the t-statistic and

the p-value for the coefficient on the macro variable, using Newey–West standard errors with

eighteen lags. The third column shows the increase in R2 when a macro variable is included as

predictor along with three PCs of yields—when using only the three yield PCs, the R2 is 0.20.

The fourth column shows the relative RMSE of forecasts with and without macroeconomic

information—values below one indicate improvement in predictive accuracy. The last three col-

umns document the predictive power of macro variables at time t for their value at tþ 1, condi-

tional on three PCs of the yield curve at time t, that is, unspanned macro forecasts. The fifth

column reports the first-order autocorrelation of the macro variables. The sixth column shows

the t-statistics for testing the null hypothesis that macro variables can be excluded from the

forecasting regressions, using Newey–West standard errors with twelve lags. The last column

shows the relative RMSE of macro-yield versus yields-only forecast.

Excess returns Macro forecasts

t-stat. p-value DR2 RMSE Autocorr. t-stat. RMSE

Policy factors

1) Unemp. gap 0.61 (0.54) 0.01 1.00 0.98 50.84 0.34

2) Output gap 0.68 (0.50) 0.01 1.00 0.95 26.99 0.46

3) INF (JPS) 4.20 (0.00) 0.16 0.89 0.99 44.29 0.34

4) Core CPI inflation 1.63 (0.10) 0.06 0.96 0.99 55.51 0.29

5) Core PCE inflation 1.73 (0.08) 0.03 0.98 0.98 49.60 0.32

Non-policy factors

6) GRO (JPS) 2.70 (0.01) 0.05 0.97 0.91 21.31 0.50

7) GDP growth (ma3) 1.83 (0.07) 0.01 0.99 0.47 4.94 0.92

8) GDP growth (yoy) 0.84 (0.40) 0.01 1.00 0.77 11.18 0.71

9) IP growth (ma3) 3.39 (0.00) 0.12 0.92 0.94 36.45 0.42

10) Jobs growth (ma3) 1.60 (0.11) 0.03 0.98 0.87 17.00 0.53

38 While Cooper and Priestley (2008) find some predictive power of the output gap for excess bond

returns, Bauer and Hamilton (2016) show that these results are not robust, consistent with our re-

sults here.
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unspanned macro variation in Section 4, there is a marked difference in the results between

policy and non-policy factors (although INF is an exception). However, even for those

macro variables that significantly improve bond return forecasts, the size of forecast gains

is quite modest—the median RMSE is improved by only 3% by inclusion of a macro

predictor.

Overall, there is some evidence for predictive power of macro variables for bond re-

turns, that is, for unspanned macro risk, consistent with the findings of Cooper and

Priestley (2008), Ludvigson and Ng (2009), and JPS. But the evidence appears somewhat

weak and variable across different macroeconomic data series. Duffee (2013b) is also skep-

tical that such evidence is robust to changes in the sample period used. Furthermore, infer-

ence about spanning in bond return regressions is problematic from an econometric

perspective—see Bauer and Hamilton (2016). Finally, the evidence on the predictive power

of macro variables is in sample and may not be reflected in out-of-sample forecasting.39 In

sum, there are many question marks about the evidence on unspanned macro risk.

However, even if this evidence is taken at face value, we show below that it does not invali-

date the spanned models.

5.2 Spanned MTSMs Are Consistent with Excess Return Regressions

Can spanned models reproduce the regression evidence on bond return predictability? In

Table VII we compare the results for predictive regressions in actual and simulated data. In

this case the predictors are PCs of yields and either GRO and INF or UGAP and CPI,

depending on the model. Table VII reports Wald statistics, calculated using Newey–West

standard errors with eighteen lags, for the joint significance of the two macro variables in

the predictive regressions, and the changes in R2 when the macro variables are added to the

predictive regressions. The former measures statistical significance, while the latter

measures economic significance, and high values indicate the presence of unspanned

macro risk.

The first two rows in Table VII show the results in the actual data when we condition

on either three or five PCs of yields. For the Wald statistics, we report p-values using the

asymptotic v2-distribution. The macro variables GRO and INF increase the predictive

power substantially, as also reported by JPS, and are highly significant in the predictive re-

gressions. On the other hand, UGAP and CPI improve forecast accuracy only marginally,

and this improvement is not statistically significant—with p-values of 0.22 and 0.12,

respectively.

The rest of Table VII reports medians of the statistics across simulated samples, as well

as the fractions of samples in which these statistics are above the values in the actual data,

that is, simulation-based p-values. Without measurement error (r¼ 0) and with five PCs as

regressors, the spanned model SM(3, 2) of course implies that the macro data cannot have

any additional predictive power—see the bottom two rows of Table VII. However, this the-

oretical spanning result is overturned either by introducing measurement error or by condi-

tioning on only three yield factors instead of all five factors. In these cases, adding macro

variables increases the predictive power of the return regression—there is some unspanned

macro risk in the simulated data. The PCs of observed yields do not fully capture the infor-

mation in the yield curve and as a consequence, macro variables, though theoretically

39 Note that GRO, the Chicago National Activity Index, was not available to investors in real time, but

only became available in 1999.
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spanned by model-implied yields, contain additional information useful for predictions.

The key question is, can the spanned model reproduce the amount of unspanned macro risk

we find in the data?

It turns out that the answer is yes, even for the case with GRO/INF where JPS have

found a large degree of unspanned macro risk. The spanned models can reproduce the gains

in return forecast accuracy of macro variables, even if we condition on five yield PCs. With

yield measurement error, the spanned model cannot be rejected by this evidence. The statis-

tical significance for predictive power in the data, measured by the Wald statistic, is easily

matched in the simulated data, with p-values above 0.3 for both data sets.

Furthermore, unspanned models do not have any advantage over spanned models in

capturing the predictability of excess bond returns. Comparing the results for predictive re-

gressions using three yield PCs, we again see that the spanned and unspanned models have

virtually identical implications.

For predictive regressions of asset returns, small-sample econometric issues often arise.

Indeed, Appendix C.2 shows that in population, the model-implied predictability of bond

Table VII. Unspanned macro risk in MTSMs

This table shows evidence for unspanned macro risk in actual and simulated data, based on

predictive regressions for 1-year excess bond returns on yield PCs and macro variables.

Statistical significance is measured by the Wald statistic for joint significance of the coefficients

on the two macro variables, using Newey–West standard errors with eighteen lags. Economic

significance is measured by the change in R2 when macro variables are added as predictors.

High values of the statistics indicate a large degree of unspanned macro risk. The top panel re-

ports results for the actual data, and numbers in parentheses are p-values using the asymptotic

v2-distribution. The rest of the table reports medians of the statistics across simulated samples,

and numbers in square brackets are the fractions of the simulated samples in which each statis-

tic is above the value in the actual data (i.e., p-values). We simulated 10,000 artificial data sam-

ples in each case.

GRO/INF UGAP/CPI

Wald DR2 Wald DR2

Data 3 PCs 21.64 0.19 3.00 0.06

(0.00) (0.22)

Data 3 PCs 13.71 0.15 4.23 0.08

(0.00) (0.12)

USM(3, 2) 3 PCs r ¼ 6bps 9.41 0.10 4.48 0.05

[0.20] [0.20] [0.62] [0.41]

r ¼ 0bps 9.38 0.10 4.51 0.05

[0.19] [0.19] [0.62] [0.41]

SM(3, 2) 3 PCs r ¼ 6bps 10.03 0.11 4.57 0.05

[0.21] [0.21] [0.62] [0.41]

r ¼ 0bps 10.00 0.11 4.56 0.05

[0.21] [0.22] [0.63] [0.41]

SM(3, 2) 5 PCs r ¼ 6bps 8.53 0.06 4.61 0.05

[0.32] [0.05] [0.53] [0.29]

r ¼ 0bps 0.00 0.00 0.00 0.00

[0.00] [0.00] [0.00] [0.00]
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returns is smaller, as is the degree of unspanned macro risk. It is therefore important to

simulate small samples, as we do here, in order to correctly assess the models’ plausibility

in light of the predictive regression evidence. Our small-sample results show that the evi-

dence on unspanned macro risk does not give any reason to prefer unspanned models over

spanned models.

6. Empirical MTSMs and Unspanned Macro Forecasts

The third and final dimension of macro spanning that we investigate concerns macroeco-

nomic forecasts. If macro information is spanned by the yield curve, then forecasts made

using information in the yield curve cannot be improved upon by including own lags of

macro variables. In particular, the persistence in macro variables would be completely cap-

tured by the yield curve. This would hold true even in the case that macro spanning holds

but observed macro variables are measured with (serially uncorrelated) measurement

errors. For this reason, Duffee (2013b) considers this regression-based analysis “more direct

evidence that the problem is misspecification” (p. 412). To study unspanned macro fore-

casts, we take a similar approach as Duffee (2013b), using the predictive regressions of the

form in Equation (8).

6.1 Regression Evidence for Unspanned Macro Forecasts

We first consider the evidence for unspanned macro forecasts for our ten macro variables.

We obtain yields-only macro forecasts by regressing each macro variable in month tþ1 on

three PCs of yields dated at t, and compare these to “macro-yields” forecasts in which the

predictors are augmented by a lag of the macro variable. Table VI reports t-statistics (using

Newey–West standard errors with twelve lags) for the null hypothesis that the lagged

macro variable can be excluded, that is, that macro forecasts are spanned, as well as the

relative RMSE comparing macro-yields forecasts to yields-only forecasts. We also calculate

first-order autocorrelations of the macro variables to help elucidate the role of persistence

in this context.

The evidence for unspanned macro forecasts is strong. Rejections of the spanning hy-

pothesis are both statistically and economically highly significant in our monthly data

set. As one would expect, the more persistent variables generally display a larger degree

of unspanned persistence, that is, a larger improvement of forecast accuracy with the in-

clusion of own macro lags. Our results are qualitatively consistent with Duffee (2013b),

but our evidence is stronger because our measures of slack and (year-over-year) core in-

flation are more persistent than Duffee’s growth and quarterly headline inflation

measures.

6.2 Spanned MTSMs Are Consistent with Macro Forecast Regressions

We now investigate whether spanned MTSMs are inconsistent with the empirical findings

of unspanned macro forecasts. The metric we focus on is the relative RMSE of (one-month-

ahead) macro-yields forecasts versus yields-only forecasts for each macro variable—values

below one indicate the presence and magnitude of unspanned macro forecasts. Again, we

compare the values obtained for regressions using the real-world data to the distribution of

values in regressions using simulated data.

Table VIII provides the results of this analysis. The first two rows report the values for

the data, using either three or five PCs of yields to obtain macro forecasts. As we noted
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above, the evidence for unspanned macro forecasts is very strong in our data. The rest of

the table shows medians and p-values based on the simulations from our MTSMs.

Importantly, the spanned MTSMs can match the strong regression evidence on unspanned

macro forecasts in the real-world data. The distribution of the median relative RMSEs

across the simulations is close to the values in the real-world data. This is true even for the

spanned model in a regression with five yield PCs, where measurement error generates a

substantial amount of unspanned macro forecasts. and helps to reconcile the models with

the regression evidence. With the exception of INF, the small-sample p-values are above

0.1. The only case in which data simulated from a spanned MTSM does not exhibit any

unspanned macro forecasts is when we condition on all five PCs and do not allow for any

yield measurement errors. In this case, macro spanning holds exactly in the simulated

data—as in Tables VI and VII—so the yield curve completely captures all relevant macro

forecast information and lags of macro variables are not needed.

We also calculated population moments for these regressions, which are reported in

Appendix C.3. For unspanned macro forecasts, just like for unspanned macro variation,

the large-sample results closely parallel the small-sample results.

The simulated regression evidence on unspanned macro forecasts mirrors the results for

unspanned macro variation and risk: spanned models are generally able to match the re-

gression evidence about as well as unspanned models. In particular, the actual values of the

regression test statistics from the real-world data are usually well within the probability dis-

tributions for these statistics when generated from plausible estimated spanned MTSMs.

Table VIII. Unspanned macro forecasts in MTSMs

This table shows the degree of unspanned macro forecasts in actual and simulated data, based

on one-step-ahead macro forecasts using linear projections on current yield PCs and the rele-

vant macro variable. It reports relative RMSE of forecasts based on both the macro variable and

yield PCs compared with forecasts based only on yield PCs. The first two rows show the relative

RMSEs for the actual data, and the rest of the table shows medians across simulated samples

and in square brackets the fractions of the simulated samples in which the relative RMSE is

below the value in the actual data (i.e., p-values). We simulated 10,000 artificial data samples in

each case.

GRO INF CPI UGAP

Data 3 PCs 0.47 0.30 0.29 0.32

5 PCs 0.50 0.34 0.29 0.34

USM(3, 2) 3 PCs r ¼ 6bps 0.49 0.36 0.33 0.37

[0.38] [0.11] [0.21] [0.16]

r ¼ 0bps 0.49 0.36 0.33 0.37

[0.35] [0.11] [0.19] [0.15]

SM(3, 2) 3 PCs r ¼ 6bps 0.49 0.35 0.33 0.38

[0.37] [0.15] [0.19] [0.14]

r ¼ 0bps 0.49 0.35 0.34 0.38

[0.35] [0.15] [0.16] [0.13]

SM(3, 2) 5 PCs r ¼ 6bps 0.55 0.44 0.33 0.39

[0.11] [0.01] [0.18] [0.16]

r ¼ 0bps 1.00 1.00 1.00 1.00

[0.00] [0.00] [0.00] [0.00]
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That is, statistically, even if the null hypothesis of theoretical macro spanning holds, the re-

gressions appear to reject macro-spanning based on the presence of unspanned macroeco-

nomic information—the regression tests are oversized as they reject the true null too often.

As a result, the regression evidence cannot discriminate between these spanned and

unspanned MTSMs. Importantly, we have shown that spanned models are consistent with

the regression evidence, which resolves the spanning puzzle.

7. Term Premia in Spanned and Unspanned MTSMs

We now examine the economic implications of macro spanning for model-based estimation

of term premia. First, we revisit the estimates of JPS, using the same macro data, GRO and

INF. Figure 2 shows two-to-three-year forward term premia from models USM(3, 2) and

SM(3, 2), as well as from a three-factor yields-only model.40 Forward term premia are

defined as differences between model-implied forward rates and risk-neutral forward rates.

With one addition, this figure essentially reproduces figure 1 of JPS: Our USM(3, 2) model

corresponds to their Mus model, and our yields-only model corresponds to their Mspan

model. The comparison shows that our estimated term premia closely resemble those of

JPS. This is true even though our models are maximally flexible while those in JPS have

various overidentifying restrictions (see our discussion in Section 2.4) and despite our use of

a slightly different yields data set.

Figure 2 also shows that the spanned and unspanned models imply essentially identical

forward term premia—the two lines corresponding to models SM(3, 2) and USM(3, 2) lie
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Figure 2. Term premium estimates from MTSMs with GRO and INF.

This figure depicts the two-to-three-year forward term premium estimated from spanned and

unspanned macro-finance models—SM(3, 2) and USM(3, 2), respectively—using GRO and INF macro

data, as well as from a three-factor yields-only model.

40 Our yields-only model is a maximally flexible affine model estimated using maximum likelihood

with the first three PCs of observed yields as risk factors and the normalization of Joslin,

Singleton, and Zhu (2011).

538 M. D. Bauer and G. D. Rudebusch

Deleted Text: p
Deleted Text: s
Deleted Text: u


almost exactly on top of each other. Evidently, the knife-edge restrictions of unspanned mod-

els do not materially affect estimated term premia. While we have shown in Section 3 that the

rejections of these restrictions are statistically significant, Figure 2 reveals that from the per-

spective of term premium estimation, these rejections are not economically significant. The

same holds for the improvements in cross-sectional fit achieved by spanned models, which

are on the order of one basis point or less, and hence are also not economically significant

(Table I). We cannot rule out that there are other empirical objects of interest for which the

knife-edge restrictions have a material impact, but for the estimation of term premia they are

inconsequential—spanned and unspanned models give practically identical results.

The intuition for our finding of essentially identical term premia from spanned and

unspanned models is straightforward. Fitted yields and forward rates are very similar from

both types of models. At the same time, spanned and unspanned models contain the same

VAR specification for Zt, and result in almost identical forecasts. Therefore not only the fitted

rates but also the risk-neutral rates, which aside from convexity terms correspond to VAR-

based forecasts of future short rates, are very similar for spanned and unspanned model. Term

premia, the differences between these two series, are therefore essentially identical as well.

This finding sharply contrasts with the claim in JPS that unspanned models “accommo-

date much richer dynamic codependencies among risk premiums and the macroeconomy

than in extant MTSMs” (p. 1198). First, unspanned models are in fact restricted versions of

spanned models. Second, both types of models allow for essentially the same risk premium

dynamics—incorporating unspanned macro risks in an MTSM does not change the term

premium implications of the model.

The yields-only model (which corresponds to theMspan model in JPS) implies a very dif-

ferent term premium than the macro-finance models with GRO and INF. Just like the rejec-

tions of the VAR restrictions emphasized by JPS (see Section 3.3), this difference in term

premia is simply due to the in-sample predictive power of the unspanned components of

GRO and INF. Should we prefer this particular macro-finance term premium over the

yields-only term premium? One way to answer this question is to judge the plausibility of

the behavior of these risk premia from a macroeconomic perspective. On these grounds,

JPS argue in favor of the macro-finance term premia, because they “show a pronounced

cyclical pattern with peaks during recessions” (p. 1198). However, these peaks occur early

in recessions or even before the beginning of the recessions, while the economy is still ex-

panding briskly and risk aversion and risk compensation are low. A more plausible business

cycle pattern for risk premia is to be high in troughs and low at peaks (Cochrane and

Piazzesi, 2005; Rudebusch and Swanson, 2012). The yields-only term premium is therefore

more plausible, since it is low late in expansions and rises throughout recessions. It peaks

near the end of the recession or early in the recovery, when economic prospects are highly

uncertain. From a macroeconomic perspective, there are reasons to question the plausibility

of the term premium implied by an MTSM with GRO and INF. The fact that these vari-

ables display substantial unspanned variation is not necessarily a good reason to include

them in an MTSM. Not only does the in-sample predictive power most likely lack robust-

ness, it also leads to quite puzzling behavior of the resulting term premia.41

An MTSM with more conventional macroeconomic variables delivers term premia that

do not show this puzzling behavior. In Figure 3, we show the forward term premia obtained

41 Bauer, Rudebusch, and Wu (2012, 2014) also discuss the countercyclical behavior of term premia

estimated from term structure models.
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from MTSMs with UGAP and CPI, together with the yields-only term premium. Again, the

implied term premia from the spanned and unspanned models are essentially identical. In

this case, they both resemble the term premium from the yields-only model. The reason is

that these macro variables are closely tied to monetary policy and to the yield curve and dis-

play little to no unspanned macro risks (see Section 4.2). From a macroeconomic perspec-

tive, the term premia in Figure 3 appear more plausible than the macro-finance term

premia in Figure 2, given their more reasonable cyclical behavior. This evidence can be

viewed as a caution against including macro variables in MTSMs that are selected on the

basis of high in-sample predictive power for excess returns. Such variables can substantially

alter estimated risk premia and can reduce their plausibility.42

Our key point here is that spanned and unspanned models imply essentially identical

term premia. While we come to different conclusions in our comparison of spanned and

unspanned models than JPS, we view their novel class of unspanned MTSMs as potentially

quite useful in applications. Importantly, we have shown that the knife-edge restrictions are

rejected on statistical grounds but leave at least some economic implications of affine

MTSMs essentially unchanged. Hence, there is no grave danger in using unspanned models

for, say, analysis of bond risk premia. One benefit of these models is the lower number of

parameters, and this parsimony simplifies estimation and inference. Overall, unspanned
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Figure 3. Term premium estimates from MTSMs with UGAP and CPI.

This figure depicts the two-to-three-year forward term premium estimated from spanned and

unspanned macro-finance models—SM(3, 2) and USM(3, 2), respectively—using UGAP and CPI macro

data, as well as from a three-factor yields-only model.

42 Duffee (2013b) notes that “the spanning requirement [. . .] reduces significantly the ability of re-

searchers to fish for variables that forecast excess returns.” Doing away with the spanning con-

straint removes the discipline imposed by it. Instead of simply adding variables that are found to

have in-sample significance in forecasting regressions, it will be important to document robust

and stable predictive power before using any particular series to augment MTSMs.
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models may be a useful shortcut in practical applications of MTSMs.43 We emphasize,

however, that these models are not needed to match the regression evidence that is usually

cited to justify their use and that they give the same answers as spanned models to questions

about risk premia.

8. Conclusion

In this paper, we have proposed a solution to the macro-finance spanning puzzle that pro-

vides support for the conventional MTSMs widely used in the literature. Our findings

should reassure the many researchers who have employed conventional spanned models for

analyzing macro-finance interactions. We show that the theoretical spanning of macro vari-

ables by model-implied yields in MTSMs does not have any practical significance in terms

of the regression evidence. Specifically, a spanned MTSM with conventional small yield

measurement errors does not conflict with the regression evidence on unspanned macro

variation, macro risk, or macro forecasts. The reason is that these regressions cannot distin-

guish between plausible estimated spanned and unspanned macro-finance models. We also

show that the knife-edge restrictions of the alternative unspanned MTSMs are strongly re-

jected in the data. At the same time, spanned and unspanned models deliver similar esti-

mates of term premia in long-term interest rates and fit observed yields about equally well.

That is, the rejections of the knife-edge restrictions of unspanned models are statistically

but not economically significant. One interpretation of our results is that the choice be-

tween spanned and unspanned models is less important than the choice of which macro

variables should be used to augment the information set for forecasting and inference about

risk premia.

One could imagine alternative solutions to the spanning puzzle. For example, some

structural and reduced-form MTSMs imply nonlinear mappings from risk factors to bond

yields. In theory, such nonlinearity breaks the (linear) spanning condition, but it remains an

empirical question as to how much unspanned macro information such nonlinearities can

generate. Another possible solution is regime-switching or parameter instability across sub-

samples. If macro spanning holds but the parameters in the spanning relation change, then

regressions using the full sample would find evidence for unspanned macro information.

While our sample period is chosen to minimize the likelihood of possible structural breaks

(e.g., due to changes in the monetary policy rule), we cannot rule out this possibility.44

These explanations may contribute to the unspanned phenomenon in the data, but our re-

sults reconcile spanned models with the regression evidence without adding any assump-

tions or model features not commonly included in the MTSM literature.

Our simulation-based approach can be used to assess the spanning implications of any

macro-finance model of the yield curve. We have argued that the canonical reduced-form

MTSM considered in this paper is representative of a broad class of spanned macro-finance

43 An established example of another such usefully constrained model in the literature is the

arbitrage-free Nelson-Siegel (AFNS) model of Christensen, Diebold, and Rudebusch (2011).

Although modest in-sample statistical rejections of the three parameter restrictions associated

with the AFNS model are not uncommon, the AFNS model provides notable economic benefits in

terms of parsimony, tractability, and intuition.

44 For example, Song (2014) appears to generate some unspanned macro variation using regime-

switching in an equilibrium MTSM.
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models, and in this sense our conclusions extend to many other models. However, equilib-

rium models of the yield curve often impose additional restrictions on macro-yield inter-

actions, or are calibrated to match certain asset pricing moments in the data. It may

therefore be of interest to investigate whether specific structural macro-finance models are

indeed consistent with the unspanned regression evidence. We leave such an investigation

to future research.

An open question about unspanned MTSMs is whether the severing of the direct link be-

tween macro variables and yields has any serious consequences. It appears that since direct

effects of macro state variables on asset prices are ruled out, the usefulness of these models

for policy analysis may be limited, in particular for studying the effects of monetary policy.

It is unclear whether the indirect link through the interaction of macro and yield factors is

sufficient to thoroughly study macro-yield interactions. More generally, the question is

whether there are economic implications of MTSMs other than the one we study here,

based on which either spanned or unspanned models seem preferable. Depending on the an-

swer to this question, it may be useful to develop hybrid models with both spanned and

unspanned macroeconomic risks.
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Appendix A: Affine Bond Pricing

Under the assumptions of Section 2, bond prices are exponentially affine functions of the

pricing factors:

Bm
t ¼ eAmþBmXt ;

and the loadings Am ¼ AmðlQ;uQ; d0; d1;RÞ and Bm ¼ Bmð/Q
; d1Þ follow the recursions

Amþ1 ¼ Am þ ðlQÞ0Bm þ
1

2
B0mRR0Bm � d0

Bmþ1 ¼ ðuQÞ0Bm � d1

with starting values A0 ¼ 0 and B0 ¼ 0. Model-implied yields are determined by

ym
t ¼ �m�1 logBm

t ¼ Am þ BmXt, with Am ¼ �m�1Am and Bm ¼ �m�1B. Risk-neutral

yields, the yields that would prevail if investors were risk-neutral, can be calculated using

~ym
t ¼ ~Am þ ~BmXt; ~Am ¼ �m�1Amðl;u; d0; d1;RÞ; ~Bm ¼ �m�1Bmðu; d1Þ:

Risk-neutral yields reflect policy expectations over the life of the bond, m�1
Pm�1

h¼0 Etrtþh,

plus a convexity term. The yield term premium is defined as the difference between actual

and risk-neutral yields, ytpm
t ¼ ym

t � ~ym
t .

Appendix B: Parameter Estimates

Here we report parameter estimates for our spanned and unspanned models, which were

obtained using maximum likelihood as described in Section 2.4 and then used for generat-

ing simulated macro-finance data sets as described in Section 4.3. The yield factors are

related to yields by the matrix W, which contains the PC loadings. To construct W we start

from the orthonormal eigenvectors of actual yields, scale the loadings for the first PC to

add up to unity, and then scale all loadings by 1200 so that they correspond to annualized

percentages. In this way the yield factors have the same scaling as the macro variables.

Table BI presents the parameters for models SM(3, 2) and USM(3, 2) estimated on the

data set with the macro variables GRO and INF, and Table BII presents the estimates ob-

tained using the data set with UGAP and INF. For further discussion of the macro variables,

see Section 4.1. We present the parameter estimates without standard errors, as these are

not needed for our purpose of simulating and comparing maximally flexible models. In add-

ition, the numerical approximations to the first and second derivatives of the likelihood

functions are unreliable for models with this many parameters. While could obtain stand-

ard errors using a bootstrap exercise, this would require re-estimating our macro-finance

models many times on simulated data sets, involving very high computational costs.

Tables BI and BII report in the last row of each panel the estimated measurement error

standard deviation, which is multiplied by 1200 so that the units are annualized percentage

points, and indicates the cross-sectional fit to observed yields. Also reported are the maxi-

mized value of the log-likelihood function, and the maximum absolute eigenvalue of the

VAR mean-reversion matrix U, which shows that the estimated VARs are stationary.
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Table BI. Parameter estimates for macro-finance models using data set with GRO/INF

kQ
1 and re are scaled by 1,200. “U ev.” is largest absolute eigenvalue of U.

Spanned model: SM(3, 2)

kQ
1 kQ

0.032 0.991 0.990 0.864 0.864 0.864

c 0 c1

�0.153 0.031 �0.013 �1.434 5.911 62.960

�1.300 0.398 0.104 0.957 2.822 �40.953

l U

0.078 0.937 �0.013 �0.022 0.105 0.100

0.021 0.006 0.978 0.170 �0.167 �0.040

0.100 �0.010 �0.006 0.783 �0.040 0.044

0.069 �0.005 0.018 �0.111 0.882 �0.002

0.050 0.002 0.006 �0.059 0.028 0.986

R

0.284 0 0 0 0

0.158 0.275 0 0 0

�0.084 �0.020 0.130 0 0

0.044 0.001 �0.023 0.187 0

0.030 0.012 0.014 0.006 0.112

re LLK U ev.

0.057 21501.9 0.984

Unspanned model: USM(3, 2)

kQ
1 kQ

0.033 0.997 0.959 0.872

l U

0.078 0.937 �0.013 �0.022 0.105 0.100

0.021 0.006 0.978 0.170 �0.167 �0.040

0.100 �0.010 �0.006 0.783 �0.040 0.044

0.069 �0.005 0.018 �0.111 0.882 �0.002

0.050 0.002 0.006 �0.059 0.028 0.986

R

0.282 0 0 0 0

0.185 0.281 0 0 0

�0.082 �0.016 0.130 0 0

0.047 0.001 �0.019 0.186 0

0.036 0.014 0.015 0.006 0.112

re LLK U ev.

0.066 21,172.9 0.984
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Table BII. Parameter estimates for macro-finance models using data set with UGAP/CPI

kQ
1 and re are scaled by 1,200. “U ev.” is largest absolute eigenvalue of U.

Spanned model: SM(3, 2)

kQ
1 kQ

0.028 0.996 0.975 0.843 0.623 0.623

c 0 c1

�86.891 1.112 �1.416 24.812 203.202 �1293.107

�28.240 0.156 �0.862 5.771 78.644 �345.862

l U

0.127 0.965 0.005 �0.074 0.033 0.028

0.042 �0.059 0.951 0.166 0.095 �0.025

0.107 �0.005 �0.008 0.812 0.025 �0.006

�0.058 0.025 0.012 0.046 0.950 0.037

0.092 0.031 �0.024 �0.064 �0.056 0.918

R

0.275 0 0 0 0

0.138 0.291 0 0 0

�0.083 �0.024 0.131 0 0

0.005 0.001 0.010 0.132 0

0.025 �0.015 �0.001 0.006 0.126

re LLK U ev.

0.062 21,336.5 0.970

Unspanned model: USM(3, 2)

kQ
1 kQ

0.033 0.997 0.960 0.870

l U

0.127 0.965 0.005 �0.074 0.033 0.028

0.042 �0.059 0.951 0.166 0.095 �0.025

0.107 �0.005 �0.008 0.812 0.025 �0.006

�0.058 0.025 0.012 0.046 0.950 0.037

0.092 0.031 �0.024 �0.064 �0.056 0.918

R

0.286 0 0 0 0

0.161 0.296 0 0 0

�0.081 �0.022 0.131 0 0

0.006 0.002 0.010 0.132 0

0.025 �0.015 �0.001 0.006 0.126

re LLK U ev.

0.066 21,209.5 0.970
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Appendix C: Spanning Results in Large Samples

Here we calculate the model-implied population moments for spanning regressions to com-

plement the results for small-sample model simulations in Sections 4–6 and to see the pos-

sible role of small-sample issues.

We first define notation and show the expressions we use to calculate population R2 and

relative RMSEs. Given a linear regression model

yt ¼ b0xt þ �t;

where it is assumed that (i) fyt;xtg are jointly stationary and ergodic, (ii) all N regressors xt

are predetermined, and (iii) Eðxtxt
0Þ has full rank, the regression R2 converges in probabil-

ity to

R2 ¼ Varðb0xtÞ
VarðytÞ

¼ b0CovðxtÞb
VarðytÞ

¼ Covðyt; xtÞCov�1ðxtÞCovðxt; ytÞ
VarðytÞ

:

In our notation, Covðyt; xtÞ is a ð1�NÞ row vector, Cov�1ðxtÞ is the inverse of the ðN
�NÞ variance–covariance matrix CovðxtÞ, and Covðxt; ytÞ is an ðN � 1Þ column vector.

Since the mean-squared-error converges to Varð�tÞ ¼ VarðytÞ � Varðb0xtÞ, the relative

RMSE of an unrestricted and a restricted model converges to

RMSEur

RMSEr
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

ur

1� R2
r

s
;

where R2
ur and R2

r are the population R2 of the unrestricted and restricted models,

respectively.

C.1 Unspanned Macro Variation

In the first type of regressions, macroeconomic variables are regressed on PCs of contem-

poraneous yields. We denote the macroeconomic variable under consideration as mt. To

emphasize the role of measurement error we write for observed yields

~Yt ¼ Yt þ et ¼ Aþ BZt þ et;

where we have CovðetÞ ¼ r2IJ. Note that for unspanned models, the rows of B correspond-

ing to the macro factors contain only zeros. The loadings for the PCs will be taken as fixed

in this analysis, corresponding to PCs in the real-world data. They are given in the matrix

W, which is a ð3� JÞ or ð5� JÞ matrix, depending on how many yield PCs are used as

regressors. Hence the regressors are ~Pt ¼W ~Yt, and we also define the PCs of model-

implied yields as Pt ¼WYt. With this notation, the first type of spanning regression is

mt ¼ b0 þ b0; ~Pt þ ut:

The population R2 is

R2 ¼ Covðmt; ~PtÞCov�1ð ~PtÞCovð ~Pt;mtÞ
VarðmtÞ

;

The relevant population moments are
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Covð ~PtÞ ¼WCovð ~Yt ÞW’ ¼WBCovðZtÞðBWÞ0 þ r2WW 0;

CovðP�t ;mtÞ ¼WBCovðZtÞim

VarðmtÞ ¼ i0mCovðZtÞim:

where im is a column vector that selects mt from Zt, that is, mt ¼ im
0Zt, and the uncondi-

tional covariance matrix of the risk factors CovðZtÞ is determined by

vecðCovðZtÞÞ ¼ ðIN 2 � u� uÞ�1vecðRR0Þ.
Table CI shows the model-implied R2 for each of the cases and models that we con-

sidered in Section 4.4. The results are very similar to the small-sample results reported

there—model-implied unspanned macro variation is clearly not a small-sample phenom-

enon. First, in the case of three PCs, models USM(3, 2) and SM(3, 2) have essentially identi-

cal implications—both generate a very substantial amount of unspanned macro variation,

sufficient to fit the R2 in the data. Second, in the case that only three PCs are used, measure-

ment error does not noticeably affect the R2. Third, confirming our simulation results,

macro spanning holds for model SM(3, 2) only if we use five PCs and do not have measure-

ment error. In this case, the regressors are PNt , which spans mt, hence the R2 is 1. Finally,

even in the case that theoretical spanning holds, small measurement error with r ¼ 6bp

generates substantial unspanned macro variation, usually enough to match the values in the

real-world data.

C.2 Unspanned Macro Risk

For the analysis of unspanned macro risk we consider two alternative regressions for excess

bond returns: The unrestricted regression includes both ~Pt and the macro variables Mt,

whereas the restricted model contains only ~Pt as predictors.

Table CI. Unspanned macro variation in MTSMs—population moments results

Unspanned macro variation in population, measured by the theoretical R2 implied by model

parameters, for regressions of macro variables on contemporaneous yield PCs. For compari-

son, the first two rows show R2 for the actual data.

GRO INF CPI UGAP

Data 3 PCs 0.28 0.81 0.81 0.73

5 PCs 0.38 0.86 0.81 0.75

USM(3, 2) 3 PCs

r ¼ 6bps 0.28 0.79 0.76 0.71

r ¼ 0 0.29 0.79 0.77 0.71

SM(3, 2) 3 PCs

r ¼ 6bps 0.28 0.76 0.76 0.72

r ¼ 0 0.29 0.77 0.77 0.72

SM(3, 2) 5 PCs

r ¼ 6bp 0.47 0.87 0.77 0.74

r ¼ 0 1.00 1.00 1.00 1.00
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Denote the model-implied excess returns for a bond with maturity n and a holding period

of h months by rx
ðnÞ
t;tþh.45 We first consider the expected excess return, for which we can

write

Etrx
ðnÞ
t;tþh ¼ bn

0Zt; bn
0 ¼ Bn�h

0uh � Bn
0 þ B0h:

This follows easily from the definition of the expected excess return—which is

Etrx
ðnÞ
t;tþh ¼ Etp

ðn�hÞ
tþh � p

ðnÞ
t � y

ð1Þ
t , for p

ðnÞ
t the log bond price, log P

ðnÞ
t —the affine formulas

for log bond prices (see Appendix A), and the VAR specification for Zt. The surprise com-

ponent of the excess return is

rx
ðnÞ
t;tþh � Etrx

ðnÞ
t;tþh ¼ Bn�h

0�t;tþh; �t;tþh ¼
Xh

i¼1

uh�iRetþi;

where we defined the VAR forecast errors �t;tþh ¼ Ztþh � EtZtþh. The dependent variable

in our regressions is the average excess return across all maturities longer than h periods,

which we write as

�rxt;tþh ¼ K�1
X

n

rx
ðnÞ
t;tþh;

denoting the number of relevant maturities by K, which is equal to 9 (from 2 to 10 years) in

our paper. For the average return we have �rxt;tþh ¼ �b
0
Zt þ �B0�t;tþh, where �b denotes the

average of bn and �B denotes the average of Bn�h across these K maturities. For the restricted

regression of excess returns on only the yield PCs we have

Table CII. Unspanned macro risk in MTSMs—population moments

Unspanned macro risk in large samples, measured by the difference in theoretical R2 for regres-

sions of 1-year excess bond returns on yield PCs (“Y”) and on both yield PCs and macro vari-

ables (“YþM”), and by the relative RMSE of return forecasts with and without macro variables.

The first two rows show these metrics for the actual historical data for comparison.

GRO/INF UGAP/CPI

R2 Y R2 YþM DR2 RMSE R2 Y R2 YþM DR2 RMSE

Data 3 PCs 0.28 0.47 0.19 0.86 0.28 0.34 0.06 0.96

5 PCs 0.33 0.49 0.15 0.88 0.33 0.41 0.08 0.94

USM(3, 2) 3 PCs

r ¼ 6bps 0.11 0.20 0.09 0.95 0.16 0.18 0.02 0.99

r ¼ 0 0.11 0.20 0.09 0.95 0.16 0.18 0.02 0.99

SM(3, 2) 3 PCs

r ¼ 6bps 0.11 0.20 0.09 0.94 0.16 0.18 0.02 0.99

r ¼ 0 0.11 0.21 0.10 0.94 0.16 0.18 0.02 0.99

SM(3, 2) 5 PCs

r ¼ 6bps 0.17 0.20 0.03 0.98 0.16 0.18 0.02 0.99

r ¼ 0 0.21 0.21 0.00 1.00 0.18 0.18 0.00 1.00

45 To simplify this analysis, we ignore the yield measurement errors that enter observed excess re-

turns. Their effects are negligibly small and unimportant for our results and intuition.
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R2
r ¼

Covð �rxt;tþh; ~PtÞCov�1ð ~PtÞCovð ~Pt; �rxt;tþhÞ
Varð �rxt;tþhÞ

;

which can be calculated based on Covð ~PtÞ and the following moments:

Covð �rxt;tþh; ~PtÞ ¼ Covð �rxt;tþh;PtÞ ¼ �b
0
CovðZtÞðWBÞ0; Varð �rxt;tþhÞ

¼ �b
0
CovðZtÞ�bþ �B0Covð�t;tþhÞ�B; Covð�t;tþhÞ ¼

Xh

i¼1

uh�iRR0ðuh�iÞ0:

Table DI. Variance of model-implied yield PCs

Varð ~PtÞ VarðPtÞ VarðWetÞ VarðWetÞ
Varð ~PtÞ

SM(3, 2), GRO/INF

PC 1 266.30 266.27 0.03 0.01%

PC 2 225.95 225.59 0.36 0.16%

PC 3 8.92 8.56 0.36 4.03%

PC 4 0.93 0.57 0.36 38.92%

PC 5 0.36 0.00 0.36 98.96%

SM(3, 2), UGAP/CPI

PC 1 251.08 251.05 0.03 0.01%

PC 2 221.80 221.44 0.36 0.16%

PC 3 8.81 8.45 0.36 4.09%

PC 4 0.40 0.04 0.36 90.69%

PC 5 0.36 0.00 0.36 98.82%

Table CIII. Unspanned macro forecasts in MTSMs—population moments

Unspanned macro forecasts in large samples, measured by the relative RMSE of macro fore-

casts using yield PCs, with and without inclusion of own macro lags. The first two rows show

R2 for the actual historical data for comparison.

GRO INF CPI UGAP

Data 3 PCs 0.47 0.30 0.29 0.33

5 PCs 0.50 0.34 0.29 0.34

USM(3, 2) 3 PCs

r ¼ 6bps 0.47 0.31 0.30 0.33

r ¼ 0 0.47 0.31 0.30 0.33

SM(3, 2) 3 PCs

r ¼ 6bps 0.47 0.30 0.30 0.34

r ¼ 0 0.47 0.30 0.30 0.34

SM(3, 2) 5 PCs

r ¼ 6bps 0.52 0.39 0.30 0.35

r ¼ 0 1.00 1.00 1.00 1.00
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The first equality is due to the fact that we focus on model-implied returns. For the unre-

stricted regression the regressors are Xt ¼ ð ~Pt
0
;Mt

0Þ0. The population R2 is

R2
ur ¼

Covð �rxt;tþh;XtÞCov�1ðXtÞCovðXt; �rxt;tþhÞ
Varð �rxt;tþhÞ

;

and the additional required population moments are

Covð �rxt;tþh;MtÞ ¼ �b
0
CovðZtÞiM; Covð ~Pt;MtÞ ¼WBCovðZtÞiM; and CovðMÞ

¼ iM
0CovðZtÞiM:

where iM is a selection matrix such that Mt ¼ iM
0Zt. Note that if spanning holds and Mt

and ~Pt are perfectly correlated, then CovðXtÞ is not invertible. In this case the collinear

regressors Mt are dropped and hence we have R2
ur ¼ R2

r .

Table CII shows the population R2 and the relative RMSEs for the return regressions in

the data and in population. The predictability of excess returns is smaller in population

than in small samples, as is the additional predictability due to the inclusion of macroeco-

nomic variables. Small-sample issues arise due to the lack of strict exogeneity and the high

persistence of the regressors—(Bauer and Hamilton (2016)). Hence, when comparing

model implications for unspanned macro risk to real-world data, we need to use short

simulated samples, as in Section 5 and Table VII. However, while the absolute magnitude

of return predictability is affected by small-sample issues, the qualitative conclusions about

unspanned macro risk and unspanned versus spanned models remain unchanged: For three

PCs, spanned and unspanned models have the same implications, and measurement error

has essentially no effect, while in the case of five PCs for the spanned model measurement

error is needed to break theoretical spanning.

C.3 Unspanned Macro Forecasts

For investigating unspanned macro forecasts, we compare unrestricted forecasts of mtþ1

using both ~Pt and mt as predictors, and restricted forecasts with only ~Pt as predictors. For

the restricted regression we can calculate the R2 using results given above and

Covð ~Pt;mtþ1Þ ¼ CovðPt;mtþ1Þ ¼WBCovðZt;mtþ1Þ ¼WBCovðZt;Ztþ1Þim

¼WBCovðZtÞu0im:

For the unrestricted regression we also need

Covðmt;mtþ1Þ ¼ im
0CovðZtÞu0im:

Note that as for the unspanned macro risk regressions, spanning leads to perfect multi-

collinearity in the unrestricted regression hence in that case R2
ur ¼ R2

r .

Table CIII shows the data and model-implied population moments for these predictive

regressions for macro variables. As in the case of unspanned macro variation, the large-

sample results closely correspond to the small-sample results. Spanned and unspanned mod-

els match the data equally well when using three yield PCs in the regressions. The results

for the spanned model with five yield PCs again show the importance of measurement

error. Notably, even very small measurement errors create a substantial amount of

unspanned macro forecasts.
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Appendix D: Measurement Error and the Variance of Yield PCs

In Section 4.5 we discuss how the introduction of small measurement error can significantly

reduce the information content in yield PCs. Here we provide further details.

The effects of measurement error can be seen most clearly by comparing the variances of

the PCs of observed yields and true yields. Note that

Covð ~PtÞ ¼ CovðPtÞ þ CovðWetÞ ¼ CovðPtÞ þ r2WW 0:

Since the rows of W are orthogonal, WW 0 is diagonal and measurement error affects

only the variances but not the covariances of ~Pt. Table DI shows these variances for models

SM(3, 2), using re ¼ 6bps. The absolute magnitudes of these variances are of little import-

ance, since they affected by the scaling of W, so we report the share of the variance of ~Pt

that is due to measurement error.

For the low-order PCs—the level, slope, and curvature—the variances are little affected

by measurement error. However, the fourth and fifth PC are small, relative to the error vari-

ance, and hence they get overwhelmed by the measurement errors. For example, about

99% of the variation in the fifth PC is due to measurement error.

How does this matter for the spanning regressions in data? In the spanned model, the

higher-order PCs “complete” the spanning in the SM(3, 2) models in the following sense:

The amount of macro information captured by low-order PCs (say, level, slope, and curva-

ture) is essentially identical in spanned and unspanned models, and largely unaffected by

the presence of measurement error—see the results for three PCs in Tables VI, VII, VIII and

in Tables CI–CIII. The theoretical spanning condition implies that spanned models capture

the remaining macro information in the higher-order PCs, that is, in the fourth and fifth

PCs in SM(3, 2). But these have very different properties from low-order PCs—they are

smaller on average and estimated less precisely—so adding measurement error essentially

wipes out their information content in the higher-order PCs. Since their information con-

tent is crucial, but does not survive the introduction of measurement error, even small

measurement errors can lead to a substantial degree of unspanned macro information.
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