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We show that conventional dynamic term structure models (DTSMs) esti-
mated on recent U.S. data severely violate the zero lower bound (ZLB) on
nominal interest rates and deliver poor forecasts of future short rates. In
contrast, shadow-rate DTSMs account for the ZLB by construction, cap-
ture the resulting distributional asymmetry of future short rates, and achieve
good forecast performance. These models provide more accurate estimates
of the most likely path for future monetary policy—including the timing of
policy liftoff from the ZLB and the pace of subsequent policy tightening.
We also demonstrate the benefits of including macroeconomic factors in a
shadow-rate DTSM when yields are constrained near the ZLB.
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DIVINING THE PATH OF FUTURE monetary policy has been of
special interest during the Great Recession and its aftermath. Expectations of future
monetary policy actions are commonly obtained from the term structure of interest
rates, which captures financial market participants’ views regarding the prospective
path of the short-term interest rate—the policy instrument of central banks. Gaussian
affine dynamic term structure models (DTSMs) are the standard representation in
finance used to extract such short-rate expectations (e.g., Piazzesi 2010). However,
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though these models have provided good empirical representations of yield curves in
the past, they are ill suited to represent the dynamics of recent near-zero interest rates
that have prevailed in many countries. In particular, they do not recognize that in the
real world, with currency available as an alternative asset, interest rates are bounded
below by zero because negative nominal interest rates would lead to riskless arbitrage
opportunities.1

The fact that Gaussian affine DTSMs ignore the zero lower bound (ZLB) was of
little consequence when interest rates were well above zero. However, as nominal
interest rates have fallen to near zero, the lack of an appropriate nonnegativity restric-
tion in conventional models has become a conspicuous theoretical deficiency. This
article presents evidence showing that the theoretical failure of standard Gaussian
affine DTSMs to account for the ZLB has been an important practical deficiency
in recent years in terms of fit, point and distributional forecasting ability, and accu-
racy of estimated monetary policy expectations. Our benchmark for comparison is
an alternative model based on the shadow-rate concept proposed by Black (1995).
The shadow-rate representation replaces the affine short-rate specification of standard
DTSMs with an identical affine process for an unobserved shadow short rate. The
observed short rate is set equal to this shadow short rate when it is positive; otherwise,
it is set to zero (or some other near-zero minimum value). Shadow-rate models are
therefore able to account for the ZLB constraint, however, this comes at the cost
of losing the convenient analytical bond pricing of affine models, so that numerical
solutions are required.

The focus of our article is the estimation of monetary policy expectations at the
ZLB. To this end, we consider yields-only and macro-finance shadow-rate models,
where the latter includes measures of economic activity and inflation as risk factors.
There is now a sizable literature arguing that a joint macro-finance approach is a very
productive research avenue for term structure modeling (e.g., Rudebusch 2010), but
this article is the first to include macroeconomic factors into a shadow-rate model. We
show that when the nominal term structure is constrained by the ZLB, the addition of
macroeconomic variables to the DTSM information set is useful for inference about
the future evolution of the yield curve. Intuitively, the ZLB limits the information
content of the yield curve because its short end is pinned at zero. In such a situation,
macrovariables provide important additional information for forecasting future yields,
particularly for predicting how long the policy rate will remain near zero.2

We begin our analysis with an evaluation of affine and shadow-rate models during
the past near-decade of very low interest rates in the United States. Given the close
proximity of interest rates to the ZLB during this period, we find that shadow-rate
DTSMs provide a statistically significant and economically relevant improvement

1. The value of the lower bound on nominal interest rates is not precisely zero due to institutional
factors including the costs associated with storing, transferring, and spending large amounts of currency.
For convenience, we will describe this constraint as a zero lower bound even though our model in principle
allows for a nonzero lower bound.

2. The value of a macro-finance approach is also consistent with the many central bank statements that
have stressed that the timing of liftoff from the ZLB is dependent on the flow of incoming macroeconomic
data.
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in fit and forecasting performance compared with standard Gaussian affine DTSMs.
Affine models frequently violate the ZLB, produce substantial estimated proba-
bilities of negative future short rates, and consequently produce quite inaccurate
short-rate forecasts at the ZLB. In contrast, we document that shadow-rate models
can accurately forecast prolonged near-zero policy rates in an out-of-sample forecast
exercise.

Shadow-rate models account for the substantial asymmetry in the distribution of
future short rates during periods of near-zero policy rates. This feature is especially
valuable for assessing monetary policy expectations embedded in the yield curve at
the ZLB. For example, one key question is how to estimate the anticipated timing
of the liftoff of the policy rate from the ZLB. A common approach among financial
market researchers and investors is to use the horizon at which forward rates cross
a given threshold, say 25 basis points, as an estimate of the expected date of liftoff.
But forward rates correspond to (risk-neutral) expectations of future short rates,
and using this mean path to estimate liftoff is problematic because it ignores the
asymmetry of the distribution of future short rates near the ZLB. A more useful
measure of policy expectations is the modal path—the most-likely path for future
short rate rates—which is readily available from a shadow-rate model. Importantly,
it appropriately accounts for the distributional asymmetry of future short rates. The
difference between the mean and modal paths, which we term the “ZLB wedge,”
reflects the asymmetry induced by the ZLB on the distribution of future short rates,
and hence reveals how tightly the ZLB constraint is binding. We use the ZLB wedge
between the 10-year yield and the corresponding shadow yield as a measure of the
tightness of the ZLB constraint and document that it increased substantially over the
period from 2009 to 2012, and then gradually decreased over 2013 and 2014, a period
when macroeconomic conditions improved notably.

To measure monetary policy expectations at the ZLB, we focus on two key metrics:
the time until liftoff and the subsequent pace of tightening. We show that the date at
which the modal path escapes from near zero provides a forecast of the time until liftoff
that is approximately optimal under an absolute-error loss function. We compute the
full forecast distribution of the liftoff horizon in order to verify the modal-path-
based liftoff estimation and to obtain interval forecasts for liftoff. Model-based liftoff
estimates based on a macro-finance yield curve model closely accord with private-
sector forecasts of the timing of monetary policy liftoff, and are consistent with
the Federal Open Market Committee’s (FOMC) calendar-based forward guidance.
Overall, the liftoff horizon can therefore serve as a useful univariate summary of
monetary policy at the ZLB.3 Our second metric, the initial pace of policy tightening,
is calculated as the cumulative increase in the modal short rate path during the first
2 years after liftoff. Our macro-finance term structure model forecasts a much more

3. In contrast, model-implied shadow short rates, which some have advocated as measures of the policy
stance near the ZLB (Krippner 2013, Wu and Xia 2014), are highly sensitive to model specification and
the exact data at the short end of the yield curve. Their lack of robustness raises a warning flag about using
shadow short rates as a measure of monetary policy.
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gradual increase in the policy rate than in previous policy tightening cycles, which is
consistent with statements by Federal Reserve policymakers.

Overall, our analysis documents the empirical relevance of the ZLB constraint and
the importance of accounting for it when carrying out inference about interest rates
and monetary policy near the ZLB. Our article is related to a number of recent stud-
ies that have also used shadow-rate DTSMs. Bomfim (2003) employs a two-factor
shadow-rate model to estimate the probability of the future policy rate hitting the
ZLB in the U.S. during the 2002–3 period. Using Japanese yield curve data, Kim and
Singleton (2012) estimate two-factor models and demonstrate the good performance
of shadow-rate models compared to alternatives, and Christensen and Rudebusch
(2015) document the sensitivity of shadow-rate estimates to model specification in
estimated one-, two- and three-factor models.4 Several other studies have consid-
ered the recent U.S. experience, including Ichiue and Ueno (2013), Christensen and
Rudebusch (2016), and Krippner (2015). Our study goes beyond these works in sev-
eral ways. In particular, we demonstrate how to capture various aspects of monetary
policy expectations at the ZLB using the modal path, incorporate information from
the yield curve and from macroeconomic variables, and provide novel estimates and
results for the ZLB period in the United States.

1. DYNAMIC TERM STRUCTURE MODELS

In this section, we describe our model specifications, the role of the ZLB constraint
in these models, and our empirical implementation, which uses monthly U.S. data.

1.1 Affine Models

The canonical affine Gaussian DTSM is based on three assumptions. First, the
short-term interest rate—the 1-month rate in our context—is affine in the N risk
factors Xt , that is,

rt = δ0 + δ′
1 Xt . (1)

Second, it is assumed that there exists a risk-neutral probability measureQ that prices
all financial assets—hence, there are no arbitrage opportunities—and that under Q
the risk factors follow a Gaussian vector autoregression (VAR),

Xt = μQ + φQXt−1 + �ε
Q
t , (2)

where � is lower triangular and ε
Q
t is an i.i.d. standard normal random vec-

tor. Third, under the real-world probability measure P, Xt also follows a

4. Ueno, Baba, and Sakurai (2006) and Ichiue and Ueno (2007) also study Japanese yields, using
one-factor and two-factor models, respectively.
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Gaussian VAR,

Xt = μ + φXt−1 + �εt , (3)

where εt is an i.i.d. standard normal random vector.5 Note that these assumptions
imply the existence of a stochastic discount factor which is essentially affine as in
Duffee (2002). The price of a bond with a maturity of m periods is determined by

Pm
t = EQ

t

[
exp

(
−

m−1∑
i=0

rt+i

)]
. (4)

In an affine model, this expectation can be found analytically, and it is exponen-
tially affine in the risk factors. Model-implied yields therefore are affine functions
of the factors. The details are well known, see Bauer and Rudebusch (2015). Impor-
tantly, a Gaussian model implies that interest rates can turn negative with nonzero
probability.

1.2 Shadow-Rate Models

Following Black (1995), our shadow-rate DTSMs are closely similar to our affine
models except that the affine short-rate equation (1) is replaced by a shadow-rate
specification:

rt = max(st , rmin), st = δ0 + δ′
1 Xt . (5)

The shadow short rate, st , is modeled as affine Gaussian, exactly as the short rate
in affine models. Equation (5) ensures that the short rate and all other model-implied
interest rates cannot go below rmin . Black (1995) set rmin = 0, and this is our choice
as well. This ZLB on nominal interest rates is typically motivated by the presence of
physical currency. Because the storage and use of large amounts of physical currency
can incur significant transaction costs, the ZLB has been violated at times in the past
when interest rates have dipped into negative territory, which could justify a small
negative value for rmin . On the other hand, the federal funds rate, the key short-term
interest rate managed by the Federal Reserve, in practice typically remains above
zero, which would be an argument in favor of a slightly positive value for rmin .
Different authors have made alternative choices, for example, Wu and Xia (2014) set
rmin = 25 basis points. We have found that our main results about policy expectations
at the ZLB remain essentially unaffected by the choice of rmin.

How useful are estimates of the shadow short rate st ? Some have interpreted
the shadow short rate as an alternative indicator of the stance of monetary

5. That is, as is standard, forecasts for the state variables can be calculated under two different
probability measures: the real-world P measure (also known as the physical or historical or objective
measure) and the risk-neutral Q measure that investors use to value assets because of their risk aversion.
Specifically, investors value assets just as a risk-neutral agent would if that agent believed that the dynamics
of state variables were characterized by the Q measure.
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policy—see, in particular, Krippner (2014), Ichiue and Ueno (2013), and Wu and
Xia (2014). However, estimated shadow short rates are highly sensitive to different
choices of rmin and to the model specification.6 This sensitivity raises a warning flag
and suggests that the use of shadow rates as indicators of monetary policy at the ZLB
is problematic.7 In this paper, we will therefore generally focus on expected future
instead of current shadow short rates.

In addition to accounting for the ZLB, a key advantage of shadow-rate models is
that away from the ZLB, they behave exactly as the corresponding affine DTSM.
Another advantage is that in contrast to other tractable non-Gaussian models that
respect the ZLB constraint, such as square-root diffusion (Cox-Ingersoll-Ross) mod-
els and quadratic models, the probability of a zero future short rate is nonzero.
This becomes crucial when addressing the issue of the duration of near-zero pol-
icy rates and the time of future liftoff, as we do in this article. The advantages of
a shadow-rate model come at the cost that it does not lead to closed-form solu-
tions for yields and bond prices. Hence the need arises for approximative solution
methods. Priebsch (2013) compares different approaches in this context, and pro-
poses a new method based on second-order approximations that is fast and highly
accurate. Here we use a discrete-time adaption of the Priebsch method, which we
describe in detail in the working paper version of this article Bauer and Rudebusch
(2015).8

1.3 Macroeconomic Variables as Risk Factors

A key modeling choice is which risk factors to include in the DTSM. We
estimate both “yields-only” models, where Xt reflects only information in the
yield curve, and “macro-finance” models, where Xt also includes macroeconomic
variables.

We use yields-only affine and shadow-rate models with three risk factors, denoting
the affine model by YA(3) and the shadow-rate model by YZ(3). We use the canonical
form of Joslin, Singleton, and Zhu (2011). The risk factors are linear combinations
of yields, with the weights corresponding to the loadings of the first N principal
components of observed yields. In the affine model, the risk factors are linear com-
binations of model-implied yields—they correspond to level, slope, and curvature of
the yield curve.9 In the shadow-rate model, the yield factors are linear combinations

6. See the results and additional references in the working paper version of this article (Bauer and
Rudebusch, 2015).

7. More promising approaches have recently been suggested by Lombardi and Zhu (2014), who infer
a shadow short rate that is consistent with other observed indicators of monetary policy and financial
conditions, and Krippner (2015), who considers the area between shadow rates and their long-term level.

8. An even simpler but somewhat less accurate approach was proposed by Krippner (2014), which is
based on an approximation of forward rates. Christensen and Rudebusch (2015) perform the necessary
derivations for the Krippner-method in an affine Nelson-Siegel model. In a discrete-time model, Wu and
Xia (2014) independently derive a bond-price approximation that is equivalent to the Krippner-method,
as shown in Krippner (2015).

9. Our affine yields-only models correspond to the RKF model specification in Joslin, Singleton, and
Zhu (2011).
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of shadow yields—the yields that obtain when the shadow short rate is used for
discounting payoffs—so that they can be interpreted as shadow level, shadow slope,
and shadow curvature.10

Macroeconomic variables are likely to be particularly informative when the yield
curve is constrained by the ZLB. To investigate this, we estimate macro-finance
DTSMs that include measures of inflation and economic activity in addition to the
yield factors. Here, we use the canonical form of Joslin, Le, and Singleton (2013b).
We use affine and shadow-rate models with two (L = 2) yield factors in addition to
the two macro factors, and denote our models by M A(2) and M Z (2).11 As in the
case of yields-only models, the yield factors are linear combinations of (model-
implied/shadow) yields, with weights corresponding to principal components of
observed yields.

In our macro-finance models, the macroeconomic variables are spanned by the
yield curve.12 An alternative is to use models with unspanned macro risks as in Joslin,
Priebsch, and Singleton (2014), where yields depend only on the yield factors but not
directly on the macrofactors. Here we maintain the assumption that macroeconomic
conditions directly affect the current short-term interest rate and yield curve, so that
they are informative for inferring policy expectations under the risk-neutral measure.
This specification is consistent with the expressed view of the Federal Open Market
Committee (FOMC) that the short rate will be based on the unemployment and
inflation rates. For further discussion of this issue and a defense of spanned macro-
finance DTSMs see Bauer and Rudebusch (2016).

1.4 Data, Measurement Error, and Estimation

Our data consist of monthly observations of interest rates and macroeconomic
variables from January 1985 to December 2014. For the short end of the yield curve,
we use 3-month and 6-month T-bill rates. The remaining rates are smoothed zero-
coupon Treasury yields with maturities of 1, 2, 3, 5, 7, and 10 years from Gürkaynak,
Sack, and Wright (2007). We measure economic activity by the unemployment gap,
using the estimate of the natural rate of unemployment from the Congressional
Budget Office. Inflation is measured by the year-over-year percent change in the
consumer price index (CPI) for all items excluding food and energy, that is, by core
CPI inflation. We include the inflation and gap measures because these are closely
linked to the target federal funds rate, the policy instrument of the Federal Reserve
(Rudebusch 2006, 2009).

Denote the vector of J = 8 model-implied yields by Yt . For the affine mod-
els, we have Yt = A + B Xt , with J -vector A and J × N -matrix B containing the

10. Shadow yields can be calculated by using the risk factors of a shadow-rate model in combination
with affine loadings.

11. We have also considered models with two macro factors and only one yields factor, as in Joslin,
Le, and Singleton (2013b). We found that these models are not able to accurately fit observed yields, and
hence focus on models with two yields factors (which were also used in Joslin, Le, and Singleton 2013a).

12. In the shadow-rate models, the macrofactors are spanned by the (unobservable) shadow yields.
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usual affine loadings. The observed bond yields used for estimation and inference
are Ŷt = Yt + et , where et is a vector of i.i.d. normal measurement error. We include
measurement error on yields because an N -dimensional factor model cannot per-
fectly price J > N yields. In line with the large literature on macro-finance DTSMs,
we do not include measurement errors on macrovariables.13

Estimation of the affine models is standard, for yields-only and macro-finance
models. In the estimation we assume that the yield factors are observed, as in Joslin,
Singleton, and Zhu (2011) and Joslin, Le, and Singleton (2013b), so that μ and
φ can be obtained using least squares and the remaining parameters are found by
maximizing the likelihood function for given VAR parameters. This is particularly
advantageous for macro-finance models, which have many parameters. Our estima-
tion method delivers fast and reliable maximum likelihood estimates.14 Instead of
estimating the shadow-rate models, we take a different approach in this article. We
estimate parameters only for the affine models YA(3) and MA(2), using the pre-ZLB
sample ending in December 2007. Over this period, affine and shadow-rate models
are essentially indistinguishable, because yields are sufficiently far from the ZLB.
Then, we use the same pre-ZLB estimated parameters in the affine models and the
corresponding shadow-rate models YZ(3) and M Z (2), and apply the models to the
full sample period until December 2014.15

Hence, we use shadow-rate and affine models with the same parameters estimated
from the pre-ZLB sample to answer questions regarding the full sample. One impor-
tant reason for this approach is that estimation of shadow-rate models incurs high
computational costs, as it requires numerical bond pricing and nonlinear filtering.
This is particularly problematic for our macro-finance models due to their many pa-
rameters. In contrast, estimation of affine models is extremely fast and much more
reliable. Although one may be concerned about using parameters in the shadow-rate
models that are not the maximum likelihood estimates, we show in Section 2 that in
spite of this, shadow-rate models in fact perform very well in our data along several
dimensions, and much better than the affine models. Another advantage to holding
the parameters the same for each pair of affine and shadow-rate models is that the
effects of the ZLB constraint when comparing each pair can be clearly seen. In addi-
tion, our approach guards against look-ahead bias from using full-sample estimates
for analyzing the ZLB period. Overall, we view our use of only pre-ZLB data for
estimation as a defensible compromise.

13. We do not allow for measurement errors on the macro factors, because in that case “the likelihood
function largely gives up on fitting the observed macrofactors in favor of more accurate pricing of bonds”
(Joslin, Le, and Singleton 2013b). Note that our affine macro-finance model corresponds to the T S f

specification in Joslin, Le, and Singleton (2013b), with the difference that we use L = 2 yield factors
instead of just one.

14. Denote by W the L × J matrix with the principal component loadings. The assumption that Xt is
observable, that is, that the L linear combination of yields in W are priced exactly by the model, implies
Xt = W Ŷt = W Yt and W et = 0 so that there are effectively only J − L independent measurement errors.

15. We use the Kalman filter for the affine models and the Extended Kalman filter for the shadow-rate
models. For details, see Bauer and Rudebusch (2015).
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TABLE 1

CROSS-SECTIONAL FIT

Model Total 3m 6m 1y 2y 3y 5y 7y 10y

Full sample
YA(3) 6.7 7.0 8.5 10.0 2.7 5.8 6.0 2.8 7.2
MA(2) 11.8 16.6 9.7 14.3 12.5 10.2 8.2 7.2 13.2
YZ(3) 6.5 6.8 8.5 9.5 3.0 5.6 6.2 3.1 6.5
MZ(2) 10.4 13.5 10.4 12.4 10.5 9.3 6.9 5.7 11.8

ZLB subsample
YA(3) 7.6 6.7 3.7 10.8 2.4 7.8 9.5 2.9 10.8
MA(2) 17.6 23.6 7.2 23.2 19.2 14.1 15.7 12.3 19.2
YZ(3) 6.8 5.5 4.5 9.2 3.4 6.8 9.7 4.3 8.2
MZ(2) 12.1 9.8 11.2 17.1 12.1 10.6 12.2 7.5 14.2

NOTES: Root-mean-squared fitting errors of model-implied yields in basis points. Full sample: January 1985 to December 2014. ZLB
subsample: December 2008 to December 2014.

2. MODEL EVALUATION

From a theoretical perspective, shadow-rate models have a fundamental advantage
over affine models in that they impose the nonnegativity of nominal interest rates. But
how relevant is this in practice? In this section, we first evaluate affine and shadow-
rate models during a period of near-zero interest rates. Then, we discuss and measure
how the ZLB constraint affects current short rates and the distribution of future
short rates.

2.1 Cross-Sectional Fit

We first assess the cross-sectional fit of model-implied yields to observed yields
for affine and shadow-rate models. Table 1 shows the root mean-squared fitting errors
(RMSEs) across models for the whole cross section of yields and for each yield
maturity separately. The top panel reports RMSEs for the whole sample, whereas the
bottom panel reports the fit for the ZLB subsample, here and in the following taken as
the period from December 2008 to December 2014.16 Overall, shadow-rate models
fit yields better than their affine counterparts. The bottom panel of Table 1 shows
that improvements in RMSEs are substantial during the ZLB subsample. During this
period, shadow-rate models have additional flexibility in fitting the cross-section of
yields, which behaves in an unusual way due to the pronounced nonlinearity at zero.
The macro-finance models exhibit slightly worse yield fit than the yields-only models.
While these models have four risk factors, more than the yields-only models, only
two of these are yield factors—compared to the three yield factors in our yields-only
models—hence they are more constrained in fitting the cross section of yields. For
our purposes here, however, the cross-sectional fit of model M Z (2) is sufficient.

16. On December 16, 2008, the FOMC lowered the target for the federal funds rate to a range from 0
to 25 basis points, hence we choose December 2008 as the first month of the ZLB subsample.
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TABLE 2

VIOLATIONS OF THE ZLB

Forward rates Short-rate expectations

Model Frequency Avg. length Frequency Avg. length

YA(3) 23 4.1 7 4.3
MA(2) 46 9.8 62 18.5

NOTES: Number of months, between December 2008 and December 2014, in which some forward rates (column two) or short-rate expectations
(column four) drop below zero, and the average length (in months) of horizon over which the forward curve/short-rate path stays negative.

2.2 Violations of the ZLB by Affine Models

To understand the relevance of the ZLB for term structure modeling in recent
U.S. data, it is important to measure the extent to which affine models violate this
constraint. One form of violation of the ZLB occurs when model-implied paths of
future short rates drop below zero at some horizons. This can happen for either
forward rates (i.e., expected future short rates under Q) or for short-rate expectations
(under P).17 Table 2 shows the number of months that forward rates or expected
future short rates drop below zero in each affine model. Also shown is the average
length of horizon that the paths stay in negative territory. Both affine models imply
short-rate paths that frequently and severely violate the ZLB constraint, and this holds
for forward curves and short-rate expectations.

Even when the expectation for the future short rate is positive, the model-implied
probability distribution for the future short rate, which is Gaussian, may put non-
negligible mass on negative outcomes. Figure 1 plots the time series of conditional
probabilities (under P) of negative future short rates at horizons of 6, 12, and 24
months, for the period from 2000 to 2014. The top panel show these probabilities
for model YA(3), and the bottom panel for model MA(2). Note that even during the
extended period of monetary easing after the 2001 recession, the probability of neg-
ative future short rates was nonnegligible. For the more recent period of near-zero
short rates from 2008 to 2014, both affine models imply that these probabilities are
high. The macro-finance model implies larger probabilities over this period than the
yields-only models. The reason is that the high unemployment and subdued inflation
toward the end of the sample imply paths of expected future short-term rates which
are very low, reflecting expectations of easier future monetary policy. This leads to
even higher probabilities of negative future short rates than for model YA(3).

2.3 Forecasting at the ZLB

Affine models produce frequent and severe ZLB violations in the recent U.S. data.
Does this matter for forecasting interest rates? While affine models may imply

17. Throughout this article, for simplicity we refer to Q-measure expectations of future short rates
as forward rates, though these of course differ from the actual forward rates by a convexity term. These
short-rate expectations, without convexity, are available in closed form even in shadow-rate models.
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FIG. 1. Affine Model Probabilities of Negative Future Short Rates.

NOTES: Model-implied real-world (P) probabilities of negative future short-term interest rates at horizons of 6 months, 1
year, and 2 years. Shaded areas correspond to NBER recessions. Sample period: January 2000 to December 2014.
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negative forecasts of future interest rates, a pragmatic solution is to simply set these
forecasts to zero, and “fixing” them in this way may lead to sufficiently accurate
forecasts. A second question is whether incorporating macroeconomic information
improves interest-rate forecasts near the ZLB, because of the limited information
content of yields that are constrained.

To address these questions, we investigate the out-of-sample forecast accuracy of
affine and shadow-rate models during the ZLB period, focusing on the 3-month T-bill
rate as the forecast target. For each month from December 2008 to December 2012,
we calculate model-based forecasts of this short rate for horizons up to 24 months.
We use a fixed-window forecast scheme, using our baseline parameter estimates,
obtained over the estimation sample from January 1985 through December 2007.

For a given forecast date and horizon, we obtain model-based forecasts by first
calculating conditional expectations of the risk factors, Et (Xt+h), and then plugging
these into the relevant yield formulas, where for the affine models we replace negative
yield forecasts by zeros. For the macro-finance models, these forecasts are not the
conditional expectations of future yields, because we plug in the conditional expec-
tations of the risk factors into nonlinear functions. However, though these forecasts
are not optimal under mean-squared-error loss, they are optimal under absolute error
loss, because they correspond to the median of the forecast distribution of future
yields.18 We use the median instead of the mean because the target distribution is
highly asymmetric due to the ZLB, and the median is less affected by this asymmetry.
The median is optimal under an absolute-error forecast loss function (see also Section
4).

Table 3 shows in the top panel the mean absolute forecast errors in basis points for
selected forecast horizons across models. The bottom panel shows relative forecast
accuracy (the ratio of mean absolute errors) for four pairs of models, with asterisks
indicating the significance level of the test for equal accuracy of Diebold and Mariano
(1995) and West (1996). Our main result is that the shadow-rate models predict the
short rate more accurately than the affine models. The differences in forecast accuracy
are very substantial, with the shadow-rate models in several cases producing forecasts
that are twice as accurate as those from the affine models. In most cases, the null
for equal forecast accuracy is rejected. Overall, shadow-rate models are at least as
accurate and typically much more accurate than affine models when forecasting
interest rates near the ZLB.

This evidence, together with the results above, demonstrates the importance of
accounting for the ZLB constraint when performing inference about the yield curve
during a period of near-zero short-term interest rates. While a sufficiently flexible
affine model might be able to satisfactorily fit the yield curve, any type of economic

18. The reason is that the median goes through nonlinear functions. Note in particular that these
forecasts correspond to the target that is approximated by the following Monte Carlo simulation: First,
simulate draws from the (Gaussian) distribution of the risk factors Xt+h , given information at time t .
Second, calculate the model-implied 3-month rate for each of these draws, replacing negative yields by
zero for the affine model. Third, obtain the point forecast as the median of this model-implied forecast
distribution of the short rate.
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TABLE 3

OUT-OF-SAMPLE FORECAST ACCURACY AT THE ZLB

Model(s) 6m 12m 18m 24m

Mean absolute forecast errors
YA(3) 18.4 48.2 85.6 122.1
MA(2) 9.5 8.4 7.4 22.9
YZ(3) 8.0 20.5 49.7 88.2
MZ(2) 9.2 8.1 6.2 12.2

Relative mean absolute forecast errors
YZ(3)/YA(3) 0.44* 0.43*** 0.58*** 0.72***

MZ(2)/MA(2) 0.97 0.96 0.84** 0.54***

MA(2)/YA(3) 0.52 0.17*** 0.09*** 0.19***

MZ(2)/YZ(3) 1.15 0.39** 0.13*** 0.14***

NOTES: Top panel shows the mean absolute forecast errors (in basis points) for out-of-sample forecasts of the 3-month T-bill rate at various
forecast horizons. Bottom panel shows the relative mean absolute forecast errors for different model pairs. *, **, and *** indicate significance
of the test for equal forecast accuracy at the 10%, 5%, and 1% level, respectively. Forecast period: December 2008 to December 2012.

inference is prone to be misleading. The ZLB has the effect that implied short-
rate paths, forecasts, and term premia (which are implied by short-rate forecasts),
produced by conventional (affine) DTSMs are likely to be seriously distorted and
cannot be trusted.

The results in Table 3 also show the benefit of incorporating macroeconomic infor-
mation for forecasting at the ZLB. With only one exception, forecasts from macro-
finance models outperform those from yields-only models, and the improvements
in forecast accuracy are sizable. For example, at horizons longer than 6 months,
the forecasts from the macro-finance shadow-rate model M Z (2) have average er-
rors that are almost an order of magnitude smaller than those of the yields-only
shadow-rate model YZ(3). These dramatic differences in forecast accuracy illustrate
the importance of accounting for macroeconomic information at the ZLB. In con-
trast, during normal times—away from the ZLB—the yield curve itself likely contains
most or all of the information necessary to predict the future course of interest rates
(Duffee 2013, Bauer and Hamilton 2015). But when the yield curve is constrained by
the ZLB, yields cannot fully incorporate all relevant information and cannot reflect
information in other important state variables. Hence it is particularly important to
incorporate macroeconomic variables when making inference about monetary policy
expectations near the ZLB. For these reasons, the macro-finance model M Z (2) is our
preferred model for the remainder of this article.

3. THE ASYMMETRIC DISTRIBUTION OF FUTURE SHORT RATES

We now consider the model-implied distribution of future short rates. The ZLB
leads to an asymmetry in this distribution which reveals how strongly the ZLB is
binding, that is, how relevant it is for the yield curve at a certain point in time.
Figure 2 illustrates this asymmetry by showing the probability densities for the
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FIG. 2. Distribution of Future Shadow Rate and Short Rate.

NOTES: Densities of future shadow rate and of future short rate, at horizon of 48 months, on December 31, 2012. Vertical
lines show the mode and mean of the distribution of the future short rate. Model: M Z (2).

distributions of the future short rate and the future shadow (short) rate, as implied by
model M Z (2) on December 31, 2012, for a horizon of h = 48 months. The densities
shown are for the risk-neutral (Q-measure) distribution, and the same arguments
apply to the real-world (P-measure) distribution. For the future shadow rate, the
density is Gaussian and centered around the conditional mean E(st+h |Xt ). The future
short rate has a mixed discrete-continuous distribution: it has a point mass at zero
(indicated in the graph with a vertical line) and for positive values the density equals
that of the shadow rate. Therefore, its conditional mean is higher than that of the
shadow rate, E(rt+h |Xt ) > E(st+h |Xt ). For what follows, it will be useful to define
the mode of the short-rate distribution uniquely as max[0, E(st+h |Xt )] (as in Kim and
Singleton 2012). The distribution of the future short rate is right skewed, the mean
being higher than the mode.

The probability of a zero future short rate corresponds to the probability of a
nonpositive future shadow rate. During normal times, this probability is negligibly
small, so that the mean and the mode of the short rate distribution approximately
coincide. The more relevant the ZLB becomes, the larger the asymmetry of the
distribution of future short rates, and the larger the difference between mean and
mode—the “ZLB wedge.” This wedge depends on the distance of yields from zero
and the second moments of yield curve distribution and measures how much the
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ZLB constrains the yield curve. It captures the cost of the optionality in equation (5),
that is, the value of the option of holding physical currency, which restrains nominal
interest rates as they approach zero.

The modal path corresponds to the mode of the future short rate distribution
across horizons, that is, the most-likely path of future short rates. It is identical
to expectations of future shadow rates when these are positive and equal to zero
when these are nonpositive. The modal path contrasts with the mean path, that
is, expectations of future short rates. Figure 3 displays mean and modal paths in
December 2012 and in December 2013 under the Q- and P-measure. For the earlier
date, the ZLB wedge between the mean and modal paths is very large and it persists
out to fairly long horizons. By the end of 2013, however, there is a much smaller
difference between these paths, and it becomes negligible for horizons longer than
about 2 years. Evidently, the ZLB constraint had a greater effect constraining the
yield curve in December 2012 than in December 2013.19

The paths under the risk-neutral measure Q are estimated using information in the
cross section of interest rates, and the mean path under Q essentially corresponds to
fitted forward rates. In contrast, the paths under the real-world probability measure
P also take into account the macroeconomic information, in addition to the current
shape of the yield curve. In December 2012, policy expectations under P and Q

were quite similar. However, in December 2013, the Q-measure paths were notably
flatter, implying a later liftoff from the ZLB and a more gradual increase of short rates
thereafter. This difference reflects a sluggish economic recovery with low underlying
inflation and persistent economic slack, which in the macro-finance model results in
an expectation of a very gradual easing of monetary policy.20

The ZLB wedge between long-term fitted and shadow interest rate measures how
tightly the ZLB constrains the entire term structure of interest rates, because it
equals the cumulative difference between the mean and modal paths (under Q).
Figure 4 shows the evolution over time of the fitted and shadow 10-year yields (top
panel) and of the ZLB wedge between them (bottom panel). Over the period from
2009 to 2012, the difference between observed and shadow yields has increased
substantially, indicating that the ZLB has increasingly constrained interest rates (see
also Christensen and Rudebusch 2016). This finding is consistent with Swanson
and Williams (2014), who measure the tightness of the ZLB using the sensitivity of
different interest rates to macroeconomic news, and document that this sensitivity has
decreased for most yields over this period.21 Conversely, over 2013 and 2014 the ZLB

19. This figure also demonstrates the limited amount of information in shadow short rates, which are
similar on both dates despite very different economic situations and yield curves.

20. Note, however, that inference about the VAR parameters μ and φ and about the real-world distri-
bution of future short rates is difficult (Bauer, Rudebusch, and Wu 2012, Duffee and Stanton 2012), so
the paths under P are subject to a substantial amount of uncertainty. In contrast, the parameters of the
risk-neutral (Q) distribution are estimated very precisely.

21. Increases in the tightness of the ZLB often coincided with key Fed announcements of easier
monetary policy, such as the switch to more explicit forward guidance by the FOMC in fall 2011, which
pushed long-term interest rates closer to their lower bound, as evident also in the top panel of Figure 4.
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December 31, 2012. Model: M Z (2).

constraint evidently has become less restrictive, due to improving macroeconomic
conditions and a resulting higher level of the 10-year yield.

4. FORECASTING MONETARY POLICY LIFTOFF

A key consideration about monetary policy expectations at the ZLB is the timing
of the future policy liftoff. How can we use the information in the yield curve and
macroeconomic information to forecast liftoff, based on our estimated shadow-rate
model?

A natural starting point for estimating monetary policy expectations at the ZLB is
an examination of the distribution of future policy liftoff. In a shadow-rate model,
policy liftoff corresponds to the initial time the shadow short rate rises above a given
threshold. We set this threshold at 25 basis points, which is consistent with 0 to 25
basis points range the Federal Reserve has kept during the ZLB period. Then we obtain
the liftoff distribution using Monte Carlo simulation. Figure 5 shows the smoothed
Kernel density of the liftoff distribution on December 31, 2012, based on simulations
from our preferred model M Z (2) under the risk-neutral distribution.22 The figure
also reports the mean, median, mode, and interquartile range and alternative liftoff
estimates based on the mean and modal paths that we will discuss below. The liftoff
distribution is strongly skewed to the right—even very distant horizons for policy
liftoff are not uncommon.

22. Starting from the current term structure at t , we simulate 10,000 sample paths for the shadow rate
using the risk-neutral dynamics of the risk factors in equation (2). For each simulation, the date of liftoff is
determined by the time that the shadow rate hits the threshold. Due to the stochastic nature of the sample
paths, we also require that the shadow rate stays above the threshold for 12 months before we designate a
policy liftoff, which leads to better-behaved liftoff distribution.
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The optimal forecast of policy liftoff based on this distribution depends on the
forecaster’s loss function. We argue that the median, which is optimal under absolute-
error loss, is the appropriate forecast in this context, due to the strong asymmetry of
the distribution. The mean is too strongly affected by the long-horizon right tail of
the distribution, and would lead to unappealingly distant liftoff forecasts.23 Hence,
to estimate future policy liftoff, our focus will be on the median as the most natural
choice for forecasting.

A crucial question is how the liftoff distribution relates to estimates of liftoff based
on the mean and modal paths. It is a common practice to base estimates of liftoff
on the mean path (under Q) obtained from forward rates or money market futures
rates. The time until liftoff is given by the horizon when this path rises above a
certain threshold (e.g., 25 basis points).24 At first glance, this approach may seem to
be an attractive model-free approach. However, by using the mean path, it ignores
the asymmetry of the distribution of the future short-term interest rate induced by
the ZLB. Because of this asymmetry, the mean path does not reflect the most likely
value of the policy rate at a future point in time, as noted in Section 3. Instead, we
advocate using the modal path for calculating liftoff estimates, and some professional
forecasters estimate liftoff in exactly this way: They first construct their most likely
path for the future policy rate and treat the first increase in this path above a 25 basis
point threshold as an estimate of policy liftoff.25 Furthermore, liftoff estimates using
the modal path essentially coincide with the median of the liftoff distribution. For
example, Figure 5 shows that in December 2012, these two estimates were almost
identical (33 vs. 34 months). This is true more generally, and the intuition for this
concordance is the following: When the modal path crosses the liftoff threshold,
the (Gaussian) shadow short rate is equally likely to be above or below the modal
short-rate path. Hence, for this horizon, there is an equal probability for liftoff to
occur earlier or later, meaning that it is the median of the liftoff distribution.26

Forecasting liftoff using the modal path is justified by the fact that this leads to
an approximately optimal forecast, whereas forecasting liftoff using the mean path
gives misleading results. This is illustrated by Figure 3, where horizontal lines at 25

23. Ichiue and Ueno (2015) used the mode of the liftoff distribution, but this is unappealing for the
problem at hand because the skewness is completely ignored.

24. For example, Ueno, Baba, and Sakurai (2006) take the horizon where Euroyen futures rates exceed
a given threshold as an estimate of future policy liftoff by the Bank of Japan, and there are many similar
examples in U.S. financial market commentary, including the article “Fed Likely to Push Back on Market
Expectations of Rate Increase,” from the June 13, 2013 issue of the Wall Street Journal.

25. The responses in the Primary Dealer Survey are consistent with the view that respondents base
their liftoff estimate on the modal path. Other examples of analysis in line with this approach include
“Reading the Tea Leaves of Rate Expectations,” Goldman Sachs US Economic Analyst from July 3, 2013.

26. To be more precise, denote by h∗ the horizon where the modal path crosses the threshold. It is
equally likely that the shadow rate is above or below the threshold at t + h∗. Since all paths that are above
the threshold at this horizon have lifted off already, the probability mass for the event of liftoff between
t and t + h∗ will be at least 0.5. Since most paths that are below the threshold have not lifted off yet,
the probability of liftoff after t + h∗ will be below but close to 0.5. A small discrepancy between these
probabilities and 0.5 arises because in some cases the shadow rate path might rise above the threshold and
then fall again below it before t + h∗, but the chance of this happening will generally be small. Hence, the
median of the liftoff distribution will always be close to h∗.
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basis points indicate the threshold for liftoff. As the modal path is always below the
mean path, the liftoff implied by the modal path is always later than that implied by
the mean path. In December 2012, the difference is particularly pronounced, due to
the strong asymmetry of the future short rate distribution. For the paths under the
Q-measure, the modal-path liftoff forecast at that point was 34 months, whereas the
estimate based on the forward curve was 22 months. The following section will show
the evolution of model-based liftoff forecasts over time.

5. POLICY EXPECTATIONS OVER THE RECENT ZLB PERIOD

The recent ZLB period started in December 2008 and at the time of this writing
(November 2015) is still ongoing. In this section, we report and discuss our model-
based estimates of monetary policy expectations over this period, considering the
forecasts of liftoff and the expected subsequent pace of policy tightening.

The top panel of Figure 6 shows model-based estimates for liftoff based on
the mean and modal paths, as well as the median and the interquartile range (IQR) of
the forecast distribution for the liftoff horizon. Although we focus on the estimates
under the Q-measure, the same arguments apply to estimates under the P-measure.
The median of the liftoff distribution is extremely close to the liftoff based on the
modal path over the entire sample, demonstrating that the modal path delivers an
approximately optimal forecast of liftoff under a mean-absolute-error loss function.
In contrast, the liftoff forecasts based on the mean path—corresponding to the com-
mon practice of estimating liftoff based on forward rates—imply liftoff that is much
earlier, often by more than a year. Differences between liftoff estimates from the
mean and modal path are particularly pronounced during 2011 and 2012, which was
when the asymmetry due to the ZLB was strongest. Our interval forecasts for fu-
ture liftoff—the IQR of the target distribution—illustrate the substantial uncertainty
around the Q-measure point forecasts for future policy liftoff, in particular in late in
2011 and in 2012.27

We now put the shadow-rate model forecasts of the time until liftoff in perspective
by comparing them to alternative estimates. The bottom panel of Figure 6 shows
liftoff forecasts based on the model-based modal paths under P and Q and two
alternative calculations of future liftoff dates by the private sector. The first is the
median of modal forecasts for the time of policy liftoff from the Survey of Primary
Dealers (SPD) of the Federal Reserve Bank of New York, which is publicly available
going back to January 2011.28 The second alternative source of liftoff estimates is

27. The model does not have stochastic volatility; however, as noted by Christensen and Rudebusch
(2016) shadow-rate models can capture some of the time variation in second moments about future
monetary policy at the ZLB.

28. See http://www.newyorkfed.org/markets/primarydealer_survey_questions.html for the questions
and answers for each survey. In the survey, the respondents are asked to provide the “estimate for [the]
most likely quarter and year of [the] first target rate increase.” We use the middle month of the quarter to
translate these responses into monthly horizons.
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FIG. 6. Liftoff.

NOTES: The top panel compares liftoff estimates from M Z (2) based on the modal and mean paths, and the median of the
liftoff distribution (all under Q). The bottom panel compares modal-path estimates under Q and P to liftoff estimates from
the Survey of Primary Dealers (median response) and from Macroeconomic Advisers, and to the FOMC’s calendar-based
forward guidance. Shaded areas are interquartile ranges of the liftoff distribution. Period: January 2008 to December
2014.
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from Macroeconomic Advisers (MA), based on their published “policy call” and on
their modal projections of the future path of the federal funds rate, that is, the most
likely scenario for Fed policy in their view. The bottom panel of Figure 6 also displays
the horizons corresponding to the FOMC’s calendar-based forward guidance—the
“mid-2013,” “late-2014,” and “mid-2015” language first used in September 2011,
January 2012, and September 2012, respectively. The FOMC had indicated that it
expected the period of near-zero policy rates to last at least as long as these horizons,
so that reasonable liftoff estimates would have to be at least as large as the horizons
corresponding to these calendar dates.

Liftoff forecasts based on the modal path under Q reflect the views about policy
liftoff that were priced into the yield curve at each month in our sample. These
estimates are generally close to those from the SPD and MA (with the exception of
2009, where the MA estimates imply substantially later liftoff). The outside estimates
and the liftoff forecast based on the Q-modal path are also generally consistent with
the FOMC’s forward guidance. In particular, they responded to the introduction
of calendar-based forward guidance by the FOMC on August 9, 2011, when the
Committee noted in its statement that it expected a near-zero policy rate until at least
mid-2013. This led to a substantial increase in the expected liftoff horizon (see also
Swanson and Williams 2014).

Turning to the liftoff forecasts under the real-world measure P, we find that over
the first half of the ZLB period, from 2009 to about mid-2012, these imply later liftoff
than the estimates under Q. The reason is that the former include the information in
macroeconomic variables, whereas the latter are based solely on the information in
the yield curve. The discrepancy between the two is due to the substantially depressed
macroeconomic situation during the Great Recession and in the early years of the
recovery. Our macro-finance model takes into account the elevated unemployment
gap and low inflation during this period, which informs the P-measure forecasts for
short rates and liftoff. The P-measure estimates of liftoff are also generally later than
the outside estimates (the only exception being the MA forecasts in 2009), and later
than the FOMC’s forward guidance. It is noteworthy that the simple macro-finance
shadow-rate model gave substantially longer and (with the benefit of hindsight) more
reasonable estimates of liftoff during the early years of the ZLB period than most
professional forecasters anticipated at the time.

The liftoff forecast can summarize the stance of monetary policy at the ZLB. No-
tably, it is highly correlated with the ZLB wedge in the 10-year yield—the correlation
is 0.99 when using the Q-measure modal path forecast liftoff. Intuitively, variation
in the length of the expected period of near-zero policy rates is the main reason
for variation in yields that are constrained by the ZLB.29 For example, based on the
liftoff estimates in Figure 6, the stance of policy became increasingly accommodative

29. In contrast, the connection between the ZLB wedge and the shadow short rate is much weaker, with
a correlation coefficient of -0.47. The shadow short rate contains a more limited amount of information,
lacks robustness and is hard to interpret. We also note that in contrast to estimated shadow short rates, our
modal paths, forecasts for liftoff, and expected pace of tightening estimated from model M Z (2) are very
robust to different choices of the numerical lower bound, rmin .
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from 2009 to 2012. Federal Reserve forward guidance announcements—including
the changes in the statement language about the appropriate path of the funds rate in
2008 and 2009, the explicit calendar-based forward guidance in 2011 and 2012, and
the outcome-based forward guidance announcement in December 2012—typically
had a noticeable impact and lengthened the estimated liftoff horizon. Accordingly,
the expected liftoff horizon appears to be a fairly comprehensive univariate summary
of the stance of monetary policy at the ZLB.

Another key dimension of monetary policy expectations at the ZLB is the expected
pace of policy tightening after liftoff. For a given expected liftoff horizon, a faster
expected pace implies higher interest rates, and vice versa. Hence, the anticipated
pace of tightening is a crucial determinant of interest rates at medium and long
maturities. To estimate the pace of tightening, a first issue is what metric to use. One
possibility would be the time from liftoff until the policy rate reaches a certain higher
threshold such as 1% or 2%. Instead, we use the cumulative anticipated increase in
the policy rate over the 2 years after liftoff—a statistic that can easily be compared to
previous monetary policy normalizations. A second issue is how to use shadow-rate
models to estimate the anticipated increase in the policy rate after liftoff. We use the
modal path for this purpose because it correctly accounts for the asymmetry of the
short-rate distribution near zero. The mean path, in contrast, is always flatter than the
modal path and would imply a slower pace of tightening.

Hence, we measure the expected pace of policy tightening as the increase in the
modal path over the 2-year horizon after first crossing the 25 basis point liftoff
threshold. Figure 7 shows this measure for the modal path under the Q and P

measures. The first thing to note is that the pace under Q has been very volatile,
varying considerably from below 1.5 to over 3 percentage points. This is due to the
fact that this measure mostly reflects information in the cross section of interest rates,
and any shift in the steepness of the yield curve translates into changes in the estimated
pace. In contrast, the pace under P is much more stable, which reflects steadier
model-based forecasts of future interest rates including macroeconomic variables.
This measure, which is our preferred measure of the pace of tightening, declines
over 2013 and 2014, and at the end of our sample, in December 2014, indicates an
anticipated increase in the policy path of slightly below 1.5 percentage points over 2
years.

Figure 7 also shows the anticipated pace of policy tightening that is implied by the
SPD modal policy paths. Both our model-based estimates imply a slower pace than is
apparently expected by the survey respondents. Although our model-based estimates
imply an increase of about a 1.5 to 2 percentage points in the policy rate over the 2
years after liftoff, the Primary Dealers have generally anticipated fairly steadily an
increase in the range of 2 to 2.5 percentage points. It is noteworthy that our preferred
model-based estimates have generally implied a later liftoff and a slower pace of
tightening than outside estimates.

How do these estimates compare to historical episodes of policy tightening? Dur-
ing the tightening cycle from February 1994 to February 1995, the Fed increased
the policy rate from 3 to 6 percentage points, which corresponds to a pace of 6
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FIG. 7. Pace of Tightening.

NOTES: Model-based estimates of the pace of tightening after policy liftoff, measured as the increase in the modal path
under the Q- and the P-measure during the subsequent 2 years, in percentage points. Also shown is the pace of tightening
implied by the policy path reported in the Survey of Primary Dealers (median response). Model: M Z (2). Period: December
2008 to December 2014.

percentage points over 2 years. From June 1999 to May 2000 the increase was from
4.75% to 6.5%, at a pace of about 3.5 percentage points, and from June 2004 to June
2006 the policy rate was raised from 1% to 5.25%, an increase at a pace of 4.25
percentage points. Clearly, in all three previous policy tightening cycles, the pace
of tightening was substantially faster than it is expected for the period after liftoff
from the ZLB. This discrepancy may be explained by the unusual situation of the
U.S. economy at the ZLB. Some Fed policymakers also expected a slow pace of
policy tightening after liftoff (see, e.g., Dudley 2014). In a speech in March 2015,
Fed Chair Yellen (see Yellen 2015) indicated that the pace of tightening in past mon-
etary policy cycles may be a “highly misleading guide” to the course of monetary
policy in 2015 and beyond because of perceived macroeconomic uncertainties, head-
winds to the domestic and global economic outlook, and a possibly slower rate of
long-run growth.

6. CONCLUSION

Using U.S. data, we estimate Gaussian affine and shadow-rate DTSMs with a
variety of risk factors and elucidate some important issues about U.S. monetary pol-
icy at the zero bound. We estimate mean and modal paths for future short rates,
taking into account the asymmetric probability distribution of future short rates at
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a range of projection horizons, and assess the associated dates for monetary policy
liftoff from the ZLB. We argue that forecasts of policy liftoff using the term structure
should be based on the modal path of future short rates, which is a near-optimal
forecast and performs well empirically. We find that the increasing model-implied
expectations of liftoff from 2009 to 2012 are very closely matched by private-sector
and survey forecasts. Furthermore, the expected duration of the ZLB period can
provide a useful measure of the stance of monetary policy and the tightness of
the ZLB. Finally, we document the benefits of including macroeconomic infor-
mation in shadow-rate models, which improves inference at the ZLB about future
monetary policy.

An admitted shortcoming of our ZLB term structure model is the assumption of
stationarity across pre-ZLB and ZLB periods, which, however, is made by all ZLB
models that we are aware of. Given the unique character of a situation with near-zero
policy rates, a useful direction for future research would be to allow for different
macro-finance dynamics depending on whether the ZLB is binding or not. Further
promising extensions of our modeling framework include imposing restrictions on
the risk pricing to gain parsimony (Joslin, Priebsch, and Singleton 2014, Bauer
2016), pinning down P-measure expectations more accurately using bias correc-
tion (Bauer, Rudebusch, and Wu 2012) or survey-based interest rate forecasts (Kim
and Orphanides 2012), or using Bayesian inference for DTSM estimation (Chib
and Ergashev 2009, Bauer 2016) to more accurately capture model and estimation
uncertainty around shadow rates and estimates of monetary policy expectations at
the ZLB.
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