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ABSTRACT

Recent U.S. Treasury yields have been constrained to some extent by
the zero lower bound (ZLB) on nominal interest rates. Therefore, we
compare the performance of a standard affine Gaussian dynamic term
structure model (DTSM), which ignores the ZLB, to a shadow-rate
DTSM, which respects the ZLB. Near the ZLB, we find notable declines
in the forecast accuracy of the standard model, while the shadow-rate
model forecasts well. However, 10-year yield term premiums are broadly
similar across the two models. Finally, in applying the shadow-rate
model, we find no gain from estimating a slightly positive lower bound on
U.S. yields.
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1. INTRODUCTION

With recent historic lows reached by nominal yields on government debt in

several countries, understanding how to model the yield curve when some

interest rates are near their zero lower bound (ZLB) is an issue that com-

mands attention both for bond portfolio pricing and risk management and

for macroeconomic and monetary policy analysis. Unfortunately, the

workhorse representation in finance for bond pricing � the affine Gaussian

dynamic term structure model � ignores the ZLB and places positive prob-

abilities on negative interest rates. In essence, this model disregards the

existence of a readily available zero-yield currency that an investor always

has the option of holding and that dominates any security with a negative

yield. This theoretical flaw in the standard model casts doubt on its useful-

ness for answering a key empirical question of this paper: how to best

extract reliable market-based measures of expectations for future monetary

policy when nominal interest rates are near the ZLB. Of course, as recent

events have shown, at times, the ZLB can be a somewhat soft floor, and

the non-negligible costs of transacting in and holding large amounts of cur-

rency have allowed government bond yields to push a bit below zero in sev-

eral countries, notably Denmark and Switzerland. In our analysis below,

we do not rigidly enforce a lower constraint of exactly zero on yields, but

as a convenient abbreviation, we will refer to an episode of near-zero short

rates as a ZLB period. The timing of this period for the United States is

evident from the nominal U.S. Treasury zero-coupon yields shown in

Fig. 1. The start of the ZLB period is commonly dated to December 16,

2008, when the Federal Open Market Committee (FOMC) lowered its

target policy rate � the overnight federal funds rate � to a range from 0 to

1/4 percent, and it continued past the end of our sample in October 2014.
The past term structure literature offers three established frameworks to

model yields near the ZLB that guarantee positive interest rates: stochastic-
volatility models with square-root processes, Gaussian quadratic models,
and Gaussian shadow-rate models. However, the first two of these
approaches treat the ZLB as a reflecting barrier and not as an absorbing
state, which seems inconsistent with the prolonged period of very low inter-
est rates shown in Fig. 1. In contrast, shadow-rate models are completely
consistent with an absorbing ZLB state for yields. In addition to these
established frameworks, there is a growing literature offering new and
interesting ways of accounting for the ZLB, including Filipović, Larsson,
and Trolle (2014) and Monfort, Pegoraro, Renne, and Roussellet (2014).
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While we consider all of these modeling approaches to be worthy of further
investigation, Gaussian shadow-rate models are of particular interest
because away from the ZLB they reduce exactly to standard Gaussian
affine models. Therefore, the voluminous literature on affine Gaussian
models remains completely applicable and relevant when given a modest
shadow-rate tweak to handle the ZLB as we demonstrate. There have also
been a few studies comparing the performance of these frameworks. For
example, Kim and Singleton (2012) and Andreasen and Meldrum (2014)
provide empirical results favoring shadow-rate representations over quad-
ratic models. However, one important issue still requiring supporting evi-
dence is the relative performance of the standard Gaussian affine dynamic
term structure model (DTSM) versus an equivalent shadow-rate model.
The standard affine DTSM is extremely well entrenched in the literature. It
is both very popular and well understood. Despite its theoretical flaw noted
above, could it be good enough for empirical purposes? To shed light on
this issue, we compare the performance of a standard Gaussian DTSM of
U.S. Treasury yields and its exact equivalent shadow-rate version. This
comparison provides a clean read on the relative merits of standard and
shadow-rate models during an episode of near-zero nominal yields.

For our comparative empirical analysis, we employ affine and shadow-
rate versions of the arbitrage-free Nelson�Siegel (AFNS) model class that
are estimated on the same data sample. The AFNS modeling structure
provides an ideal framework for our analysis because of its excellent empiri-
cal properties and tractable and robust estimation.1 For the Gaussian affine
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Fig. 1. Treasury Yields Since 2005. Notes: One- and 10-year weekly U.S. Treasury

zero-coupon bond yields from January 7, 2005, to October 31, 2014.
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model, we use the structure identified by Christensen and Rudebusch (2012)
(henceforth CR), which is referred to throughout as the CR model. Since
CR only detail the model’s favorable properties through 2010, our analysis
provides an update through October 2014, which includes a much longer
ZLB period. As for the shadow-rate model, we use the shadow-rate AFNS
model class introduced in Christensen and Rudebusch (2015). This is a
latent-factor model in which the state variables have standard Gaussian
dynamics, but the short rate is given an interpretation of a shadow rate in
the spirit of Black (1995) to respect the ZLB for bond pricing. Christensen
and Rudebusch (2015) apply this structure to a sample of near-ZLB
Japanese government bond yields; however, they limit their analysis to the
full-sample estimated parameters and state variables. Instead, we exploit the
empirical tractability of that shadow-rate AFNS model, denoted here as the
B-CR model, to study real-time forecast performance.2

Therefore, in this paper, we combine and extend the analysis of two recent
papers. We compare the results from the CR model to those obtained from
the B-CR model using the same sample of U.S. Treasury yield data. We can
compare model performance across normal and ZLB periods and study real-
time forecast performance, short-rate projections, term premium decomposi-
tions, and the properties of its estimated parameters. We find that the B-CR
model provides slightly better fit as measured by in-sample metrics such as
the RMSEs of fitted yields and the quasi likelihood values. Still, it is evident
that a standard three-factor Gaussian DTSM like the CR model has enough
flexibility to fit the cross-section of yields fairly well at each point in time even
when the short end of the yield curve is flattened by the ZLB. However, it is
not the case that the Gaussian model can account for all aspects of the term
structure at the ZLB. Indeed, we show that the CR model clearly fails along
two dimensions. First, despite fitting the yield curve, the model cannot cap-
ture the dynamics of yields at the ZLB. One stark indication of this is the
high probability the model assigns to negative future short rates � obviously
a poor prediction. Second, it misses the compression of yield volatility that
occurs at the ZLB as expected future short rates are pinned near zero, longer-
term rates fluctuate less. The B-CR model, even without incorporating sto-
chastic volatility, can capture this effect. In terms of forecasting future short
rates, we establish that the CR model is competitive over the normal period
from 1995 to 2008. Thus, this model could have been expected to continue to
perform well in the most recent period, if only it had not been for the pro-
blems associated with the ZLB. However, we also show that during the most
recent period the B-CR model stands out in terms of forecasting future short
rates in addition to performing on par with the regular model during the
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normal period. Overall, a shadow-rate model shows clear empirical advan-
tages. Still, the affine model may be a good first approximation for certain
tasks. For example, we estimate 10-year term premiums that are broadly simi-
lar across the affine and shadow-rate models.

In addition, we study two empirical questions pertaining to the implemen-
tation of shadow-rate models. The first concerns the appropriate choice of
the lower bound on yields. We argue that U.S. Treasury yield data point to
zero as the appropriate lower bound, but throughout the paper, we consider
the case with the lower bound treated as a free parameter that is determined
by quasi maximum likelihood.3 Our findings suggest that there are few if any
gains in forecast performance from estimating the lower bound, and those
gains come at the cost of fairly large estimated values of the lower bound.
Since the estimated path of the shadow rate is sensitive to this choice (as we
demonstrate), this is not an innocent parameter and should be chosen with
care.4 The second question we address is the closeness of the estimated para-
meters between a standard DTSM and its equivalent shadow-rate representa-
tion. If any differences between the parameter sets are small economically
and statistically, this would provide a quick and efficient shortcut to avoid
having to estimate shadow-rate models. Instead, one could simply rely on the
estimated parameters from the matching standard model.5 Unfortunately, we
find that the differences in the estimated parameters can be sizable and eco-
nomically important. Thus, while we cannot endorse the approach of relying
on estimated parameters from a standard model as a way of implementing
the corresponding shadow-rate model, our results still suggest that its opti-
mal parameters do provide a reasonable guess of where to start the para-
meter optimization in the estimation of the shadow-rate model.

The rest of the paper is structured as follows. Section 2 describes
Gaussian models in general as well as the CR model that we consider, while
Section 3 details our shadow-rate model. Section 4 contains our empirical
findings and discusses the implications for assessing policy expectations
and term premiums in the current low-yield environment. Section 5 con-
cludes. Three appendices contain additional technical details.

2. A STANDARD GAUSSIAN TERM STRUCTURE

MODEL

In this section, we provide an overview of the affine Gaussian term struc-
ture model, which ignores the ZLB, and describe the CR model.

79Modeling Yields at the Zero Lower Bound



2.1. The General Model

Let Pt τð Þ be the price of a zero-coupon bond at time t that pays $ 1, at
maturity tþ τ: Under standard assumptions, this price is given by

Pt τð Þ ¼ EP
t

Mtþ τ

Mt

� �

where the stochastic discount factor, Mt, denotes the value at time t0 of a
claim at a future date t, and the superscript P refers to the actual, or real-
world, probability measure underlying the dynamics of Mt. (As we will dis-
cuss in the next section, there is no restriction in this standard setting to
constrain Pt τð Þ from rising above its par value; i.e., the ZLB is ignored.)

We follow the usual reduced-form empirical finance approach that mod-
els bond prices with unobservable (or latent) factors, here denoted as Xt,
and the assumption of no residual arbitrage opportunities. We assume that
Xt follows an affine Gaussian process with constant volatility, with
dynamics in continuous time given by the solution to the following stochas-
tic differential equation (SDE):

dXt ¼ KP θP −Xt

� �
dtþΣdWP

t

where KP is an n× n mean-reversion matrix, θP is an n× 1 vector of mean
levels, Σ is an n× n volatility matrix, and WP

t is an n-dimensional Brownian
motion. The dynamics of the stochastic discount function are given by

dMt ¼ rtMtdtþΓ0
tMtdW

P
t

and the instantaneous risk-free rate, rt, is assumed affine in the state variables

rt ¼ δ0 þ δ01Xt

where δ0 ∈R and δ1 ∈Rn: The risk premiums, Γt; are also affine as in Duffee
(2002):

Γt ¼ γ0 þ γ1Xt

where γ0 ∈Rn and γ1 ∈Rn× n:
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Duffie and Kan (1996) show that these assumptions imply that zero-
coupon yields are also affine in Xt:

yt τð Þ ¼ −
1

τ
A τð Þ− 1

τ
B τð Þ0Xt

where A τð Þ and B τð Þ are given as solutions to the following system of ordin-
ary differential equations:

dB τð Þ
dτ

= − δ1 − KP þΣγ1
� �0

B τð Þ; B 0ð Þ ¼ 0;

dA τð Þ
dτ

= − δ0 þB τð Þ0 KPθP −Σγ0
� �þ 1

2

Xn
j¼1

Σ0B τð ÞB τð Þ0Σ� �
j;j
; A 0ð Þ ¼ 0

Thus, the A τð Þ and B τð Þ functions are calculated as if the dynamics of the
state variables had a constant drift term equal to KPθP −Σγ0 instead of the
actual KPθP and a mean-reversion matrix equal to KP þΣγ1 as opposed to
the actual KP. The probability measure with these alternative dynamics is
frequently referred to as the risk-neutral, or Q, probability measure since
the expected return on any asset under this measure is equal to the risk-free
rate rt that a risk-neutral investor would demand. The difference is deter-
mined by the risk premium Γt and reflects investors’ aversion to the risks
embodied in Xt.

Finally, we define the term premium as

TPt τð Þ ¼ yt τð Þ− 1

τ

Z tþ τ

t

EP
t rs½ � ds

That is, the term premium is the difference in expected return between a
buy and hold strategy for a τ-year. Treasury bond and an instantaneous
rollover strategy at the risk-free rate rt.

6

2.2. The CR Model

A wide variety of Gaussian term structure models have been estimated. Here,
we describe the empirical representation identified by CR that uses
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high-frequency observations on U.S. Treasury yields from a sample that
includes the recent ZLB period. It improves the econometric identification
of the latent factors, which facilitates model estimation.7 The CR model is
an AFNS representation as introduced in Christensen, Diebold, and
Rudebusch (2011) with three latent state variables, Xt ¼ Lt; St;Ctð Þ: These
are described by the following system of SDEs under the risk-neutral
Q-measure:8

dLt

dSt

dCt

0
B@

1
CA ¼

0 0 0

0 λ − λ

0 0 λ

0
B@

1
CA

θQ1

θQ2

θQ3

0
BB@

1
CCA−

Lt

St

Ct

0
B@

1
CA

2
664

3
775dtþΣ

dW
L;Q
t

dW
S;Q
t

dWC;Q
t

0
B@

1
CA; λ>0 ð1Þ

where Σ is the constant covariance (or volatility) matrix.
In addition, the instantaneous risk-free rate is defined by

rt ¼ Lt þ St ð2Þ

This specification implies that zero-coupon bond yields are given by

yt τð Þ ¼ Lt þ
1− e− λτ

λτ

� 	
St þ

1− e− λτ

λτ
− e− λτ

� 	
Ct −

A τð Þ
τ

where the factor loadings in the yield function match the level, slope, and
curvature loadings introduced in Nelson and Siegel (1987). The final yield-
adjustment term, A τð Þ=τ; captures convexity effects due to Jensen’s inequality.

The model is completed with a risk premium specification that connects
the factor dynamics to the dynamics under the real-world P-measure as
explained in Section 2.1. The maximally flexible specification of the AFNS
model has P-dynamics given by9

dLt

dSt

dCt

0
B@

1
CA¼

κP11 κ
P
12 κ

P
13

κP21 κ
P
22 κ

P
23

κP31 κ
P
32 κ

P
33

0
B@

1
CA

θP1
θP2
θP3

0
B@

1
CA−

Lt

St

Ct

0
B@

1
CA

2
64

3
75dtþ

σ11 0 0

σ21 σ22 0

σ31 σ32 σ33

0
B@

1
CA

dWL;P
t

dWS;P
t

dWC;P
t

0
B@

1
CA ð3Þ

Using both in- and out-of-sample performance measures, CR went through
a careful empirical analysis to justify various zero-value restrictions on the
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KP matrix. Imposing these restrictions results in the following dynamic
system for the P-dynamics:

dLt

dSt

dCt

0
B@

1
CA ¼

10− 7 0 0

κP21 κP22 κP23

0 0 κP33

0
BB@

1
CCA

0

θP2

θP3

0
B@

1
CA−

Lt

St

Ct

0
B@

1
CA

0
B@

1
CAdtþΣ

dWL;P
t

dWS;P
t

dWC;P
t

0
BB@

1
CCA ð4Þ

where the covariance matrix Σ is assumed diagonal and constant. Note
that in this specification, the Nelson�Siegel level factor is restricted to be
an independent unit-root process under both probability measures.10 As
discussed in CR, this restriction helps improve forecast performance inde-
pendent of the specification of the remaining elements of KP. Because
interest rates are highly persistent, empirical autoregressive models, includ-
ing DTSMs, suffer from substantial small-sample estimation bias.
Specifically, model estimates will generally be biased toward a dynamic
system that displays much less persistence than the true process (so esti-
mates of the real-world mean-reversion matrix, KP, are upward biased).
Furthermore, if the degree of interest rate persistence is underestimated,
future short rates would be expected to revert to their mean too quickly
causing their expected longer-term averages to be too stable. Therefore,
the bias in the estimated dynamics distorts the decomposition of yields
and contaminates estimates of long-maturity term premiums. As described
in detail in Bauer, Rudebusch, and Wu (2012), bias-corrected KP estimates
are typically very close to a unit-root process, so we view the imposition of
the unit-root restriction as a simple shortcut to overcome small-sample
estimation bias.

We re-estimated this CR model over a larger sample of weekly nom-
inal U.S. Treasury zero-coupon yields from January 4, 1985, until
October 31, 2014, for eight maturities: three months, six months, one
year, two years, three years, five years, seven years, and 10 years.11 The
model parameter estimates are reported in Table 1. As in CR, we test the
significance of the four parameter restrictions imposed on KP in the CR
model relative to the unrestricted AFNS model.12 The four parameter
restrictions are not rejected by the data at conventional levels of signifi-
cance similar to what CR report; thus, the CR model appears flexible
enough to capture the relevant information in the data compared with an
unrestricted model.
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2.3. Negative Short-Rate Projections in Standard Models

Before turning to the description of the shadow-rate model, it is useful to
reinforce the basic motivation for our analysis by examining short-rate
forecasts from the estimated CR model. With regard to short-rate fore-
casts, any standard affine Gaussian DTSM may place positive probabilities
on future negative interest rates. Accordingly, Fig. 2 shows the probability
that the short rate three months out will be negative obtained from rolling
real-time weekly re-estimations of the CR model. Prior to 2008 the prob-
abilities of future negative interest rates are negligible except for a brief
period in 2003 and 2004 when the Fed’s policy rate temporarily stood at
1 percent. However, near the ZLB � since late 2008 � the model is typically

Table 1. Parameter Estimates for the CR Model.

KP KP
·;1 KP

·;2 KP
·;3 θP Σ

KP
1;· 10−7 0 0 0 σ11 0.0066

(0.0001)

KP
2;· 0.3390 0.4157 −0.4548 0.0218 σ22 0.0100

(0.1230) (0.1154) (0.0843) (0.0244) (0.0002)

KP
3;· 0 0 0.6189 −0.0247 σ33 0.0271

(0.1571) (0.0074) (0.0004)

Notes: The estimated parameters of the KP matrix, θP vector, and diagonal Σ matrix are shown

for the CR model. The estimated value of λ is 0.4482 (0.0022). The numbers in parentheses are

the estimated parameter standard deviations. The maximum log likelihood value is 70,754.54.
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Fig. 2. Probability of Negative Short Rates. Notes: Illustration of the conditional

probability of negative short rates three months ahead from the CR model.
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predicting substantial likelihoods of impossible realizations. Worse still,
whenever these probabilities are above 50 percent (indicated with a solid
gray horizontal line), the model’s conditional expected short rate is
negative, which has frequently been the case since 2009.

3. A SHADOW-RATE MODEL

In this section, we describe an option-based approach to the shadow-rate
model and estimate a shadow-rate analog to the CR model with U.S. data.

3.1. The Option-Based Approach to the Shadow-Rate Model

The concept of a shadow interest rate as a modeling tool to account for the
ZLB can be attributed to Black (1995). He noted that the observed nominal
short rate will be nonnegative because currency is a readily available asset to
investors that carries a nominal interest rate of zero. Therefore, the existence
of currency sets a ZLB on yields. To account for this ZLB, Black postulated
a shadow short rate, st, that is unconstrained by the ZLB. The usual observed
instantaneous risk-free rate, rt, which is used for discounting cash flows when
valuing securities, is then given by the greater of the shadow rate or zero:

rt ¼ max 0; stf g ð5Þ

Accordingly, as st falls below zero, the observed rt simply remains at the
zero bound.

While Black (1995) described circumstances under which the zero bound
on nominal yields might be relevant, he did not provide specifics for imple-
mentation. The small set of empirical research on shadow-rate models has
relied on numerical methods for pricing.13 To overcome the computational
burden of numerical-based estimation that limits the use of shadow-rate
models, Krippner (2013) suggested an alternative option-based approach
that makes shadow-rate models almost as easy to estimate as the standard
model.14 To illustrate this approach, consider two bond-pricing situations:
one without currency as an alternative asset, and the other that has a cur-
rency in circulation with a constant nominal value and no transaction
costs. In the world without currency, the price of a shadow-rate zero-
coupon bond, Pt τð Þ; may trade above par; that is, its risk-neutral expected
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instantaneous return equals the risk-free shadow short rate, which may be
negative. In contrast, in the world with currency, the price at time t for a
zero-coupon bond that pays 1 when it matures in τ years is given by Pt τð Þ:
This price will never rise above par, so nonnegative yields will never be
observed.

Now consider the relationship between the two bond prices at time t for
the shortest (say, overnight) maturity available, δ. In the presence of cur-
rency, investors can either buy the zero-coupon bond at price Pt δð Þ and
receive one unit of currency the following day or just hold the currency. As
a consequence, this bond price, which would equal the shadow bond price,
must be capped at 1:

P t δð Þ ¼ min 1;Pt δð Þ
 �
¼ Pt δð Þ−max Pt δð Þ− 1; 0


 �
That is, the availability of currency implies that the overnight claim has a
value equal to the zero-coupon shadow bond price minus the value of a call
option on the zero-coupon shadow bond with a strike price of 1. More gener-
ally, we can express the price of a bond in the presence of currency as the price
of a shadow bond minus the call option on values of the bond above par:

Pt τð Þ ¼ Pt τð Þ−CA
t τ; τ; 1ð Þ

where CA
t τ; τ; 1ð Þ is the value of an American call option at time t with

maturity in τ years and strike price 1 written on the shadow bond maturing
in τ years. In essence, in a world with currency, the bond investor has had
to sell off the possible gain from the bond rising above par at any time
prior to maturity.

Unfortunately, analytically valuing this American option is complicated
by the difficulty in determining the early exercise premium. However,
Krippner (2013) argues that there is an analytically close approximation
based on tractable European options. Specifically, Krippner (2013) shows
that the ZLB instantaneous forward rate, f

t
τð Þ; is

f
t
τð Þ ¼ ft τð Þ þ zt τð Þ

where ft τð Þ is the instantaneous forward rate on the shadow bond, which
may go negative, while zt τð Þ is an add-on term given by
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zt τð Þ ¼ lim
δ→ 0

∂
∂δ

CE
t τ; τþ δ; 1ð Þ
Pt τþ δð Þ

� �
ð6Þ

where CE
t τ; τþ δ; 1ð Þ is the value of a European call option at time t with

maturity tþ τ and strike price 1 written on the shadow discount bond
maturing at tþ τþ δ: Thus, the observed yield-to-maturity is

y
t
τð Þ ¼ 1

τ

Z tþ τ

t

f
t
sð Þds

¼ 1

τ

Z tþ τ

t

ft sð Þdsþ
1

τ

Z tþ τ

t

lim
δ→ 0

∂
∂δ

CE
t s; sþ δ; 1ð Þ
Pt sþ δð Þ

2
4

3
5ds

¼ yt τð Þ þ 1

τ

Z tþ τ

t

lim
δ→ 0

∂
∂δ

CE
t s; sþ δ; 1ð Þ
Pt sþ δð Þ

2
4

3
5ds

Hence, bond yields constrained at the ZLB can be viewed as the sum of the
yield on the unconstrained shadow bond, denoted yt τð Þ; which is modeled
using standard tools, and an add-on correction term derived from the price
formula for the option written on the shadow bond that provides an
upward push to deliver the higher nonnegative yields actually observed.

As highlighted by Christensen and Rudebusch (2015), the Krippner
(2013) framework should be viewed as not fully internally consistent and
simply an approximation to an arbitrage-free model.15 Of course, away
from the ZLB, with a negligible call option, the model will match the stan-
dard arbitrage-free term structure representation. In addition, the size of
the approximation error near the ZLB has been determined via simulation
for Japanese yield data in Christensen and Rudebusch (2015) to be quite
modest, and we provide similar evidence in Appendix A for our sample of
U.S. Treasury yields.

3.2. The B-CR Model

In theory, the option-based shadow-rate result is quite general and applies
to any assumptions made about the dynamics of the shadow-rate process.
However, as implementation requires the calculation of the limit in Eq. (6),
the option-based shadow-rate models are limited practically to the
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Gaussian model class. The AFNS class is well suited for this extension.16 In
the shadow-rate AFNS model, the shadow risk-free rate is defined as the
sum of level and slope as in Eq. (2) in the original AFNS model class, while
the affine short rate is replaced by the nonnegativity constraint:

st ¼ Lt þ St; rt ¼ max 0; stf g

All other elements of the model remain the same. Namely, the dynamics of
the state variables used for pricing under the Q-measure remain as
described in Eq. (1), so the yield on the shadow discount bond maintains
the popular Nelson and Siegel (1987) factor loading structure

yt τð Þ ¼ Lt þ 1− e− λτ

λτ

� 	
St þ 1− e− λτ

λτ
− e− λτ

� 	
Ct −

A τð Þ
τ

where A τð Þ=τ is the same maturity-dependent yield-adjustment term.
The corresponding instantaneous shadow forward rate is given by

ft τð Þ ¼ −
∂
∂T

ln Pt τð Þ ¼ Lt þ e− λτSt þ λτe− λτCt þAf τð Þ

where the yield-adjustment term in the instantaneous forward rate function
is given by

Af τð Þ ¼ −
∂A τð Þ
∂τ

¼ −
1

2
σ211τ

2−
1

2
σ221þσ222
� � 1−e−λτ

λ

0
@

1
A

2

−
1

2
σ231þσ232þσ233
� � 1

λ2
−
2

λ2
e−λτ−

2

λ
τe−λτþ 1

λ2
e−2λτþ2

λ
τe−2λτþτ2e−2λτ

2
4

3
5

−σ11σ21τ
1−e−λτ

λ
−σ11σ31

1

λ
τ−

1

λ
τe−λτ−τ2e−λτ

2
4

3
5

− σ21σ31þσ22σ32ð Þ 1

λ2
−
2

λ2
e−λτ−

1

λ
τe−λτþ 1

λ2
e−2λτþ1

λ
τe−2λτ

2
4

3
5

88 JENS H. E. CHRISTENSEN AND GLENN D. RUDEBUSCH



Krippner (2013) provides a formula for the ZLB instantaneous forward
rate, f

t
τð Þ; that applies to any Gaussian model

f
t
τð Þ ¼ ft τð ÞΦ ft τð Þ

ω τð Þ

� 	
þω τð Þ 1ffiffiffiffiffi

2π
p exp −

1

2

ft τð Þ
ω τð Þ

� �2 !

where Φ ·ð Þ is the cumulative probability function for the standard normal
distribution, ft τð Þ is the shadow forward rate, and ω τð Þ is related to the con-
ditional variance, v τ; τþ δð Þ; appearing in the shadow bond option price
formula as follows:

ω τð Þ2 ¼ 1

2
lim
δ→ 0

∂2v τ; τþ δð Þ
∂δ2

Within the shadow-rate AFNS model, ω τð Þ takes the following form:

ω τð Þ2 = σ211τþ σ221 þ σ222
� �1− e− 2λτ

2λ

þ σ231 þ σ232 þ σ233
� � 1− e− 2λτ

4λ
−
1

2
τe− 2λτ −

1

2
λτ2e− 2λτ

2
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þ 2σ11σ21
1− e− λτ

λ
þ 2σ11σ31 − τe− λτ þ 1− e− λτ

λ

2
4

3
5

þ σ21σ31 þ σ22σ32ð Þ − τe− 2λτ þ 1− e− 2λτ

2λ

2
4

3
5

Therefore, the zero-coupon bond yields that observe the ZLB, denoted
y
t
τð Þ; are easily calculated as

y
t
τð Þ ¼ 1

τ

Z tþ τ

t

ft sð ÞΦ
ft sð Þ
ω sð Þ

� 	
þω sð Þ 1ffiffiffiffiffi

2π
p exp −

1

2

ft sð Þ
ω sð Þ

� �2 !" #
ds
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As in the affine AFNS model, the shadow-rate AFNS model is completed
by specifying the price of risk using the essentially affine risk premium spe-
cification introduced by Duffee (2002), so the real-world dynamics of the
state variables can be expressed as in Eq. (3). Again, in an unrestricted
case, both KP and θP are allowed to vary freely relative to their counter-
parts under the Q-measure. However, we focus on the case with the same
KP and θP restrictions as in the CR model, that is, the P-dynamics are given
by Eq. (4), on the assumption that outside of the ZLB period, the shadow-
rate model would properly collapse to the standard CR form. We label this
shadow-rate model as the B-CR model as already discussed in Section 1.

We estimate the B-CR model from January 4, 1985, until October 31,
2014, for eight maturities: three months, six months, one year, two years,
three years, five years, seven years, and 10 years.17 The estimated B-CR
model parameters are reported in Table 2. Later on, we make a more com-
prehensive analysis of the estimated parameters in both models. For now,
as with the CR model, we test the significance of the four parameter restric-
tions imposed on KP in the B-CR model relative to the unrestricted
B-AFNS model.18 Fig. 3 shows that, for most sample cutoff points since
1995, the four parameter restrictions are not rejected by the data at conven-
tional levels of significance. Also shown with a solid gray line are the quasi
likelihood ratio tests of the six restrictions in the most parsimonious
B-AFNS model with independent factors relative to the unrestricted
B-AFNS model, which are clearly rejected. Thus, similar to the CR model,
the B-CR model appears flexible enough to capture the relevant informa-
tion in the data compared with an unrestricted model.

Table 2. Parameter Estimates for the B-CR Model.

KP KP
·;1 KP

·;2 KP
·;3 θP Σ

KP
1;· 10−7 0 0 0 σ11 0.0069

(0.0001)

KP
2;· 0.1953 0.3138 −0.4271 0.0014 σ22 0.0112

(0.1474) (0.1337) (0.0904) (0.0364) (0.0002)

KP
3;· 0 0 0.4915 −0.0252 σ33 0.0257

(0.1200) (0.0087) (0.0004)

Notes: The estimated parameters of the KP matrix, θP vector, and diagonal Σ matrix are shown

for the B-CR model. The estimated value of λ is 0.4700 (0.0026). The numbers in parentheses

are the estimated parameter standard deviations. The maximum log likelihood value is

71,408.90.
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3.3. Measuring the Effect of the ZLB

To provide evidence that we should anticipate to see at least some differ-
ence across the regular and shadow-rate models, we turn our focus to the
value of the option to hold currency, which we define as the difference
between the yields that observe the ZLB and the comparable lower shadow
discount bond yields that do not. Fig. 4 shows these yield spreads at the
5- and 10-year maturity based on real-time rolling weekly re-estimations of
the B-CR model starting in 1995 through October 31, 2014. Beyond a very
few temporary small spikes, the option had economically insignificant value
prior to the failure of Lehman Brothers in the fall of 2008.19 However,
despite the zero short rate since 2008, it is not really until after August
2011 that the option obtains significant sustained value. At its peak in the
fall of 2012, the yield spread was 80 and 60 basis points at the five- and 10-
year maturity, respectively. Option values at those levels suggest that it
should matter for model performance whether a model accounts for the
ZLB of nominal yields. Section 4 is dedicated to analyzing this question,
but first we discuss the choice of lower bound in the shadow-rate model.
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Fig. 3. Quasi Likelihood Ratio Tests of Parameter Restrictions in B-AFNS Models.

Notes: Illustration of the value of quasi likelihood ratio tests of the restrictions

imposed in the independent-factor B-AFNS model, and in the B-AFNS model

underlying the B-CR model, relative to the B-AFNS model with unrestricted

KP-matrix and diagonal Σ-matrix. The analysis covers weekly re-estimations from

January 6, 1995, to October 31, 2014, a total of 1,035 observations, while the full data

set used in the analysis covers the period from January 4, 1985, to October 31, 2014.
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3.4. Nonzero Lower Bound for the Short Rate

In this section, we consider a generalization of the B-CR model that allows
for the lower bound of the short rate to differ from zero, that is,

rt ¼ max rmin; stf g

Christensen and Rudebusch (2015) provide the formula for the forward
rate that respects the rmin lower bound:

20

f
t
τð Þ ¼ rmin þ ft τð Þ− rminð ÞΦ ft τð Þ− rmin

ω τð Þ

� 	
þω τð Þ 1ffiffiffiffiffi

2π
p exp −

1

2

ft τð Þ− rmin

ω τð Þ

� �2 !

where the shadow forward rate, ft τð Þ; and ω τð Þ remain as before.
A few papers have used a nonzero lower bound for the short rate. In the

case of U.S. Treasury yields, Wu and Xia (2014) simply fix the lower bound
at 25 basis points. A similar approach applied to Japanese, U.K., and U.S.
yields is followed by Ichiue and Ueno (2013).21 As an alternative, Kim and
Priebsch (2013) leave rmin as a free parameter to be determined in the model
estimation. Using U.S. Treasury yields they report an estimated value of 14
basis points.
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In theory, the lower bound should be zero because that is the nominal
return on holding currency, which is a readily available alternative to hold-
ing bonds. Furthermore, U.S. Treasury yield data also supports a choice of
zero for the lower bound. Specifically, in the daily H.15 database through
October 31, 2014 (of which we use a weekly subsample), the zero boundary
is never violated. The one-month yield is 0 on 51 dates, the three-month
yield is 0 on 8 dates, while the six-month yield never goes below 2 basis
points. In addition, since late 2008, the spread between the six- and three-
month yields is always nonnegative with a single exception, October 11,
2013, when it was negative 1 basis point. Thus, with three- and six-month
yields less than 10 basis points and the yield curve steep for much of the
time spent near the ZLB, the choice of zero for the lower bound of the
short rate appears to be a reasonable assumption that is supported by both
the data and theoretical considerations.22 Still, it is econometrically feasible
to leave rmin as a free parameter to be determined by the data as in Kim
and Priebsch (2013). Thus, ultimately, it is an empirical question what is
the appropriate choice for the lower bound of the short rate in shadow-rate
models. To make a comprehensive and in-depth assessment of the econom-
ical and statistical importance of this parameter, we use rolling weekly re-
estimations of the B-CR model with and without restricting rmin to zero.

Fig. 5 illustrates the estimated value of rmin from the rolling re-estimations
since January 6, 1995. At the start of this sample, rmin was estimated to be
almost 285 basis points, but since then, it has been trending lower. As of
October 31, 2014, the full-sample estimate of the lower bound was 11 basis
points. Even that relatively low value of rmin censors much of the variation in
the short end of the yield curve. There are 215 weekly observations of the
three-month yield below that level in our sample, while the corresponding
number for the six-month and one-year yields is 124 and 8, respectively.
Given that we have 307 weekly observations from the ZLB period (defined
as the period since December 19, 2008), more than 70 percent of the time
spent in the ZLB period the model would ignore variation in the three-month
yields, while it ignores variation in the six-month yield more than 40 percent
of the time.

In Fig. 5(b), we show quasi likelihood ratio tests of restricting rmin to
zero in the B-CR model relative to leaving it unrestricted. We note that the
zero restriction has been systematically rejected since 1995. Most problema-
tically, the rejection is strongest since 2010 when a lower bound of zero
appears to be most appropriate according to the level of short-term yields
in the data. Thus, the need to fully understand the effects of varying the
lower bound in shadow-rate models is evident.
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To demonstrate that the choice of rmin may not be innocuous, consider
the estimated shadow-rate path. Fig. 6 shows this path for the B-CR
model with and without restricting rmin to zero. For comparison, the esti-
mated short-rate path from the CR model is also shown. All three models
are indistinguishable along this dimension before 2008, so the figure only
shows the estimated paths since then. Note that the estimated shadow-
rate path is sensitive to the choice of rmin, as was also highlighted by
Bauer and Rudebusch (2014). For this reason, our results below will
include B-CR model specifications with rmin restricted to zero and freely
estimated.

4. COMPARING AFFINE AND SHADOW-RATE

MODELS

In this section, we compare the empirical affine and shadow-rate models
across a variety of dimensions, including parameter stability, in-sample fit,
volatility dynamics, and out-of-sample forecast performance.
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Fig. 5. Estimates of rmin and Quasi Likelihood Ratio Tests of its Zero Restriction.

Notes: Panel (a) illustrates the estimated value of rmin in the B-CR model from

weekly re-estimations from January 6, 1995, to October 31, 2014, a total of 1,035

observations. Panel (b) shows quasi likelihood ratio tests of restricting rmin to zero

in the B-CR model, also based on weekly re-estimations from January 6, 1995, to

October 31, 2014. The full data set used in the analysis covers the period from

January 4, 1985, to October 31, 2014.
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4.1. Analysis of Parameter Estimates

To begin, we analyze the parameter stability and similarity of the empirical
affine and shadow-rate models, where the latter is estimated with and with-
out restricting rmin to zero throughout. We also assess the reasonableness
of using estimated parameters from the affine model in combination with
the shadow-rate model as a way of avoiding the burden of making a full
shadow-rate model estimation.

Fig. 7 shows the estimated parameters in the mean-reversion matrix KP.
First, we note that all three models give very similar parameter estimates
before December 2008. This is not surprising since the shadow-rate models
collapse to the affine model away from the lower bound, and it does not
matter much whether the lower bound is fixed at zero or left as a free para-
meter. Second, since late 2008, we do see some larger deviations with a ten-
dency for the shadow-rate models to produce higher persistence of the
slope and curvature factors as indicated by their lower estimates of κP22 and
κP33: However, judged by the estimated parameter standard deviations
reported in Tables 1 and 2, these differences in the individual parameters
do not appear to be statistically significant.

In Fig. 8, we compare the estimated volatility parameters. While the esti-
mated volatility parameters for the level factor are fairly similar across all
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three paths are based on full sample estimations with data covering the period from
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three models throughout the entire period as can be seen in Fig. 8(a), there
are larger differences in the estimated volatility of the slope and curvature
factors during the most recent period as illustrated in Fig. 8(b) and (c). In
the shadow-rate models, the slope factor is allowed to be more volatile in
the post-crisis period compared to the standard model as it is not required
to fully match the low volatility of short-term yields near the ZLB when-
ever the shadow rate is in negative territory.

Fig. 9 shows the estimated mean parameters since 1995. These para-
meters represent another area where the models “learn” something about
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Fig. 7. Estimates of Mean-Reversion Parameters. Notes: Illustration of the

estimated parameters in the mean-reversion KP matrix in the CR and B-CR models,
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the true parameter values through the updating during the ZLB period.
The low yield levels in this period translate into gradually declining esti-
mates of the mean parameters, θP2 and θP3 ; in particular the estimate of θP3
has declined notably since the crisis. Since the curvature factor in its role as
the stochastic mean of the slope factor represents expectations for future
monetary policy, a potential explanation for the decline in its estimated
mean would be the anchoring of monetary policy expectations in the
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medium term at a low level, perhaps reflecting various forms of policy
forward guidance employed by the FOMC since late 2008.

Finally, in Fig. 10, we compare the various estimates of the λ parameter
that determines the rate of decay in the yield factor loading of the slope
factor and the peak maturity in the yield factor loading of the curvature
factor. Here, we see a more long-term trend toward lower values. This sug-
gests that investors’ speculation about future monetary policy as repre-
sented through the variation of the curvature factor has tended to take
place at longer maturities more recently than compared to two decades
ago. What role the greater transparency of the FOMC’s monetary policy
decisions plays for this trend is an interesting question that we leave for
future research.

To summarize our findings so far, overall, the differences between the
standard and the shadow-rate models for individual parameters look rela-
tively small and are in most cases not statistically significant. Still, it could
be the case that the minor differences combined could add up to material
differences not only statistically, but also economically. We end the section
by analyzing this important question further.

The way we proceed is to take the estimated parameters from the B-CR
model with rmin restricted to zero as of December 28, 2007, and those from
the CR model as of December 28, 2007, and October 31, 2014. We then
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Fig. 9. Estimates of Mean Parameters. Notes: Illustration of the estimated

parameters in the mean θP vector in the CR and B-CR models, where the latter is
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combine these three parameter vectors with the B-CR model with rmin

restricted to zero to obtain the corresponding filtered state variables as of
October 31, 2014. Finally, we use each pair of parameters and filtered state
variables to calculate the projection of the short rate as of October 31,
2014. These projected paths are shown in Fig. 11. The benchmark in the
comparison is obtained by using the B-CR model’s own estimated para-
meters as of October 31, 2014, to filter the state variables on that date and
combine them to generate the associated short-rate projection as of
October 31, 2014, shown with a solid black line in Fig. 11.

It is immediately noted that the differences in the short-rate projections
are huge. The parameters estimated with the CR and B-CR models as of
December 28, 2007, both imply a rather quick rate of mean reversion and
to a high-level approaching 4 percent in the long run, while the parameters
estimated with the CR model as of October 31, 2014, imply an even quicker
rate of mean reversion at first, but they have the short-rate leveling off near
3 percent in the long run due to lower estimated values of the mean para-
meters, θP2 and θP3 : In contrast, the B-CR model’s own projection implies a
later liftoff, a more gradual normalization of monetary policy, and to a
lower long-run level of about 2 percent, due to the higher persistence (lower
κP22 and κP33 estimates) and lower means of the slope and curvature factors
relative to the two alternative parameter vectors.
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Fig. 10. Estimates of the λ Parameter. Notes: Illustration of the estimated λ
parameter in the CR and B-CR models, where the latter is estimated with and
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To shed more light on the source of the disagreement about the short-
rate paths, in the lower right corner of Fig. 11, we report the four different
filtered state variable vectors used as conditioning variables in the calcula-
tions of the short-rate projections. We note that they are slightly different
from one another. However, to demonstrate that this is not the cause for
the differences in the short-rate projections, we condition on all four state
variable vectors using the B-CR model with its estimated parameters as of
October 31, 2014. In addition to the solid black line, this produces the
dotted gray lines in the figure, which are practically indistinguishable from
the solid black line. Thus, the variation in the short-rate projections in
Fig. 11 is entirely driven by differences in the parameter vectors.

Furthermore, we note that the differences are material, not just econom-
ically, but also statistically. The log likelihood values obtained from evaluat-
ing the extended Kalman filter of the B-CR model at each of the four
parameter sets are 71,200.19, 71,181.75, 71,260.51, and 71,408.90, respec-
tively, where the latter is the value of the likelihood function of the B-CR
model evaluated at its own optimal parameters as of October 31, 2014.
Thus, the deviations in each parameter do combine into huge likelihood
differences as well.

Based on these findings we cannot recommend using pre-crisis parameter
estimates to assess recent policy expectations as done in Bauer and
Rudebusch (2014), and even the use of contemporaneous parameter

2014 2016 2018 2020 2022 2024

0
1

2
3

4

R
at

e 
in

 p
er

ce
nt

B-CR state (12/28−2007) = (0.0382,−0.0520,−0.0137)

CR state (12/28−2007) = (0.0382,−0.0519,−0.0137)

CR state (10/31−2014) = (0.0382,−0.0536,−0.0110)

B-CR state (10/31−2014) = (0.0370,−0.0556,−0.0082)

B-CR parameter, 12/28−2007     
CR parameter, 12/28−2007     
CR parameter, 10/31−2014     
B-CR parameter, 10/31−2014     

Fig. 11. Sensitivity of Short-Rate Projections to Model Parameters. Notes: Illustration

of short-rate projections as of October 31, 2014, implied by the B-CR model with rmin

restricted to zero using different model parameters and state variables as explained in

the main text.

100 JENS H. E. CHRISTENSEN AND GLENN D. RUDEBUSCH



estimates from the affine model in combination with the shadow-rate model
does not seem warranted as a way to alleviate the burden of estimation. To
facilitate the estimation of the shadow-rate model, we feel that, at most,
what can be gained from estimating the matching affine model is to use its
optimal parameters as a starting point for the parameter optimization in
the estimation of the shadow-rate model.

Finally, we note that these results demonstrate the importance of under-
taking rolling real-time model estimations like the ones performed in this
paper when evaluating model performance near the ZLB. However, it
remains an open question to what extent the state variables will maintain
their recent high persistence or revert back toward the lower pre-crisis
levels once the normalization of policy rates begins. Thus, we caution that
there is a risk that rolling estimations might underperform during the early
stages of the subsequent policy tightening cycle.

4.2. In-Sample Fit and Yield Volatility

The summary statistics of the fit to yield levels of the affine and shadow-
rate models are reported in Table 3. They indicate a very similar fit in the
normal period up until the end of 2008. However, since then, we see a
notable advantage to the shadow-rate models that is also reflected in the like-
lihood values. Still, we conclude from this in-sample analysis that it is not in
the model fit that the shadow-rate model really distinguishes itself from its reg-
ular cousin, and this conclusion is not sensitive to the choice of lower bound.

However, a serious limitation of standard Gaussian models is the assump-
tion of constant yield volatility, which is particularly unrealistic when peri-
ods of normal volatility are combined with periods in which yields are
greatly constrained in their movements near the ZLB. A shadow-rate model
approach can mitigate this failing significantly. In the CR model, where
zero-coupon yields are affine functions of the state variables, model-implied
conditional predicted yield volatilities are given by the square root of

VP
t yNT τð Þ� � ¼ 1

τ2
B τð Þ0VP

t XT½ �B τð Þ

where T − t is the prediction period, τ is the yield maturity, B τð Þ contains
the yield factor loadings, and VP

t XT½ � is the conditional covariance
matrix of the state variables.23 In the B-CR model, on the other hand,
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zero-coupon yields are nonlinear functions of the state variables and con-
ditional predicted yield volatilities have to be generated by standard
Monte Carlo simulation. Fig. 12 shows the implied three-month condi-
tional yield volatility of the three-month and two-year yields from the CR
and B-CR models.

To evaluate the fit of these predicted three-month-ahead conditional
yield standard deviations, they are compared to a standard measure of
realized volatility based on the same data used in the model estimation, but
at daily frequency. The realized standard deviation of the daily changes in
the interest rates are generated for the 91-day period ahead on a rolling
basis. The realized variance measure is used by Andersen and Benzoni
(2010), Collin-Dufresne, Goldstein, and Jones (2009), as well as Jacobs and
Karoui (2009) in their assessments of stochastic volatility models. For each
observation date t the number of trading days N during the subsequent
91-day time window is determined and the realized standard deviation is
calculated as

Table 3. Summary Statistics of the Fitted Errors.

RMSE Maturity in Months All Yields

3 6 12 24 36 60 84 120

Full sample

CR 30.82 15.02 0.00 2.49 0.00 3.05 2.71 10.74 12.81

B-CR, rmin ¼ 0 29.89 14.27 0.90 2.26 0.27 2.67 2.28 9.97 12.32

B-CR, rmin free 29.78 14.23 0.88 2.23 0.35 2.65 2.36 9.86 12.27

Normal period (Jan. 6, 1995�Dec. 12, 2008)

CR 32.76 15.66 0.00 2.51 0.00 3.01 2.50 10.53 13.47

B-CR, rmin ¼ 0 32.69 15.48 0.74 2.39 0.09 2.80 2.09 10.48 13.40

B-CR, rmin free 32.69 15.49 0.62 2.40 0.10 2.81 2.16 10.50 13.41

ZLB period (Dec. 19, 2008�Oct. 31, 2014)

CR 21.13 12.05 0.00 2.42 0.00 3.17 3.41 11.56 10.07

B-CR, rmin ¼ 0 13.40 7.55 1.37 1.64 0.57 2.06 2.93 7.60 6.96

B-CR, rmin free 12.11 7.04 1.54 1.30 0.75 1.91 3.02 6.60 6.27

Notes: Shown are the root-mean-squared fitted errors (RMSEs) for the CR and B-CR mod-

els, where the latter is estimated with and without restricting rmin to zero. All numbers are

measured in basis points. The data covers the period from January 6, 1985, to October 31,

2014.
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RVSTD
t;τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
n¼1

Δy2tþ n τð Þ

vuut
where Δytþ n τð Þ is the change in yield y τð Þ from trading day tþ n− 1ð Þ to
trading day tþ n:24

While the conditional yield volatility from the CR model changes little
(merely reflecting the updating of estimated parameters), the conditional
yield volatility from the B-CR models fairly closely matches the realized
volatility series.25 As for leaving rmin as a free parameter, we note that it
does lead to a slightly closer fit to the realized yield volatilities of medium-
term yields, but it comes at the tradeoff of periodically producing effec-
tively zero volatility of short-term yields as shown in Fig. 12(a).

4.3. Forecast Performance

In this section, we first compare the ability of standard and shadow-rate
models to forecast future short rates, before we proceed to evaluate their
ability to forecast the entire cross section of yields.
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Fig. 12. Three-Month Conditional Yield Volatilities Since 2009. Notes: Panel (a)

illustrates the three-month conditional volatility of the three-month yield implied by

the estimated CR and B-CR models, where the latter is estimated with rmin both

restricted to zero and left free. Also shown is the subsequent three-month realized

volatility of the three-month yield based on daily data. Panel (b) illustrates the

corresponding results for the three-month conditional volatility of the two-year yield.
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4.3.1. Short-Rate Forecasts
Extracting the term premiums embedded in the Treasury yield curve is ulti-
mately an exercise in generating accurate policy rate expectations. Thus,
to study bond investors’ expectations in real time, we use the rolling re-
estimations of the CR model and its shadow-rate equivalents on expanding
samples � adding one week of observations each time, a total of 1,035 esti-
mations. As a result, the end dates of the expanding samples range from
January 6, 1995, to October 31, 2014. For each end date during that period,
we project the short-rate six months, one year, and two years ahead.26

Importantly, the estimates of these objects rely essentially only on informa-
tion that was available in real time. Besides examining the full sample, we
also distinguish between forecast performance in the normal period prior
to the policy rate reaching its effective lower bound (the 13 years from 1995
through 2008) and the ZLB period.

For robustness, we include results from another established U.S.
Treasury term structure model introduced in Kim and Wright (2005),
henceforth KW), which is a standard latent three-factor Gaussian term
structure model of the kind described in Section 2.1.27 Summary statistics
for the forecast errors relative to the subsequent realizations of the target
overnight federal funds rate set by the FOMC are reported in Table 4,
which also contains the forecast errors obtained using a random walk
assumption. We note the strong forecast performance of the KW model
relative to the CR model during the normal period, while it is equally
obvious that the KW model underperforms grossly during the ZLB period
since December 19, 2008. As expected, the CR and B-CR models exhibit
fairly similar performance during the normal period, while the B-CR model
stands out in the most recent ZLB period. Importantly, we note that, for
forecasting future short rates near the ZLB, forecast accuracy is not
improved by allowing for a nonzero lower bound in the B-CR model
despite the reported in-sample statistical advantage of doing so.

Fig. 13 compares the models’ one-year-ahead forecasts to the subsequent
target rate realizations. The KW model’s systematic overprediction of future
target rates since late 2008 stands out. For the CR model, the deterioration
in forecast performance is not really detectable until after the August 2011
FOMC meeting when explicit forward guidance was first introduced. Since
the CR model mitigates finite-sample bias in the estimates of the mean-
reversion matrix KP by imposing a unit-root property on the Nelson�Siegel
level factor, it suggests that the recent deterioration for the CR model must
be caused by other more fundamental factors. Importantly, though, the
shadow-rate models appear much less affected by any such issues.
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4.3.2. Yield Forecasts
Now, we extend the analysis above and evaluate the models’ yield forecast
performance more broadly. Note that, due to the nonlinear yield function
in the shadow-rate models, their yield forecasts are generated using Monte
Carlo simulations. Also, we note that yield forecasts from the KW model
are not available and therefore not included in the analysis.

Table 4. Summary Statistics for Target Federal Funds Rate Forecast
Errors.

Six-Month

Forecast

One-Year

Forecast

Two-Year

Forecast

Mean RMSE Mean RMSE Mean RMSE

Full forecast period

Random walk 14.94 80.01 30.16 142.74 60.58 232.35

KW model 7.44 62.61 51.42 124.46 125.38 222.64

CR model −0.51 63.27 13.99 123.55 55.01 224.25

B-CR model, rmin ¼ 0 3.51 59.79 21.80 117.95 64.79 216.53

B-CR model, rmin free 10.16 57.58 29.22 116.86 72.80 213.76

Normal forecast period

Random walk 20.71 94.19 40.73 165.87 77.47 262.75

KW model −3.40 69.68 35.62 132.67 102.34 226.36

CR model −0.33 72.08 16.41 141.20 57.30 250.94

B-CR model, rmin ¼ 0 2.57 69.97 24.00 136.56 69.30 243.18

B-CR model, rmin free 9.45 67.07 31.45 134.89 75.99 239.22

ZLB forecast period

Random walk 0.00 0.00 0.00 0.00 0.00 0.00

KW model 35.53 38.70 96.53 97.28 207.99 208.73

CR model −0.97 30.17 7.08 43.93 46.82 69.37

B-CR model, rmin ¼ 0 5.95 12.35 15.51 19.91 48.62 54.32

B-CR model, rmin free 11.98 15.79 22.87 26.47 61.37 65.82

Notes: Summary statistics of the forecast errors�mean and root-mean-squared errors (RMSEs)�
of the target overnight federal funds rate six months, one year, and two years ahead. The fore-

casts are weekly. The top panel covers the full forecast period that starts on January 6, 1995, and

runs until May 2, 2014, for the six-month forecasts (1,009 forecasts), until November 1, 2013, for

the one-year forecasts (983 forecasts), and until November 2, 2012, for the two-year forecasts

(931 forecasts). The middle panel coves the normal forecast period from January 6, 1995, to

December 12, 2008, 728 forecasts. The lower panel covers the zero lower bound forecast period

that starts on December 19, 2008, and runs until May 2, 2014, for the six-month forecasts (281

forecasts), until November 1, 2013, for the one-year forecasts (255 forecasts), and until November

2, 2012, for the two-year forecasts (203 forecasts). All measurements are expressed in basis points.
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Table 5 reports the summary statistics of errors for real-time forecasts of
three-month, two-year, five-year, and 10-year Treasury yields during the
normal period from January 6, 1995, to December 12, 2008. First, we note
that there is barely any difference in the shadow-rate models between
restricting rmin to zero or leaving it free during the normal period. Second,
in this period, the CR model is slightly worse at forecasting short- and
medium-term yields than the B-CR model, but has a slight advantage
at forecasting long-term yields. Finally, we note that the CR and B-CR
models are competitive at forecasting yields of all maturities up to one year
ahead relative to the random walk.

Table 6 reports the summary statistics of yield forecast errors during the
recent ZLB period for the same four yield maturities considered in Table 5.
First, because all three models have mean-reverting factor dynamics for the
slope and curvature factors, they systematically underestimate how long yields
would remain low in the aftermath of the financial crisis. This aspect of the
data clearly benefits the random walk assumption. Second, the B-CR model
dominates at forecasting short-term yields consistent with its ability to forecast
future federal funds target rates reported in Table 4. On the other hand, the
CR model continues to exhibit a strong performance at forecasting long-term
yields. Finally, it is again the case that leaving rmin as a free parameter when
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Fig. 13. Forecasts of the Target Overnight Federal Funds Rate. Notes: Forecasts

of the target overnight federal funds rate one year ahead from the CR and B-CR

models, where the latter is estimated with rmin both restricted to zero and left free.

Also shown are the corresponding forecasts from the KW model. Subsequent

realizations of the target overnight federal funds rate are included, so at date t, the

figure shows forecasts as of time t and the realization from t plus one year. The

forecast data are weekly observations from January 6, 1995, to October 31, 2014.
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yields are near the ZLB implies notably poorer yield forecast performance at
longer forecast horizons, except for the longest yield maturity.

4.4. Decomposing 10-Year Yields

One important use for affine DTSMs has been to separate longer-term
yields into a short-rate expectations component and a term premium.

Table 5. Summary Statistics for Forecast Errors of U.S. Treasury Yields
in the Normal Period.

Six-Month

Forecast

One-Year

Forecast

Two-Year

Forecast

Mean RMSE Mean RMSE Mean RMSE

Three-month yield

Random walk −20.19 90.14 −39.28 157.11 −75.03 248.91

CR model −29.27 89.51 −46.30 154.19 −86.86 254.06

B-CR model, rmin ¼ 0 −32.53 88.39 −53.73 151.32 −97.88 248.24

B-CR model, rmin free −37.60 87.83 −59.48 150.69 −103.06 245.26

Two-year yield

Random walk −20.14 86.68 −36.74 132.02 −73.05 207.26

CR model −19.69 86.87 −39.00 130.61 −82.26 203.61

B-CR model, rmin ¼ 0 −21.32 86.54 −42.01 130.03 −86.32 202.61

B-CR model, rmin free −21.78 86.61 −42.41 130.04 −86.47 202.08

Five-year yield

Random walk −17.02 74.15 −29.19 98.38 −58.79 137.49

CR model −24.38 73.83 −40.66 98.68 −76.62 140.18

B-CR model, rmin ¼ 0 −25.09 74.09 −41.93 99.08 −78.38 140.78

B-CR model, rmin free −24.80 74.10 −41.48 98.98 −77.87 140.79

Ten-year yield

Random walk −12.76 59.13 −20.87 72.80 −42.42 84.95

CR model −7.21 56.33 −18.34 69.85 −44.06 85.19

B-CR model, rmin ¼ 0 −7.81 56.52 −19.27 70.32 −45.40 86.24

B-CR model, rmin free −7.68 56.52 −19.17 70.33 −45.52 86.34

Notes: Summary statistics of the forecast errors�mean and root-mean-square errors

(RMSEs) � of the three-month, two-year, five-year, and 10-year U.S. Treasury yields six

months, one year, and two years ahead. The forecasts are weekly during the normal period

from January 6, 1995, to December 12, 2008, a total of 728 forecasts for all three forecast

horizons. All measurements are expressed in basis points.
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Here, we document the different decompositions of the 10-year Treasury
yield implied by the CR and B-CR models. To do so, we calculate, for each
end date during our rolling re-estimation period, the average expected path
for the overnight rate, 1=τ

� � R tþ τ
t

EP
t rs½ �ds; as well as the associated term pre-

mium � assuming the two components sum to the fitted bond yield, ŷt τð Þ:28

Table 6. Summary Statistics for Forecast Errors of U.S. Treasury Yields
in the ZLB Period.

Six-Month

Forecast

One-Year

Forecast

Two-Year

Forecast

Mean RMSE Mean RMSE Mean RMSE

Three-month yield

Random walk −1.34 6.45 −2.15 7.17 −4.63 7.36

CR model −6.87 26.29 −19.02 42.16 −64.52 79.07

B-CR model, rmin ¼ 0 −16.98 19.68 −33.42 35.80 −74.04 78.55

B-CR model, rmin free −21.04 23.78 −38.69 41.38 −85.16 89.05

Two-year yield

Random walk −3.45 23.04 −9.84 26.13 −22.60 41.34

CR model −18.08 31.03 −47.88 54.65 −113.68 119.87

B-CR model, rmin ¼ 0 −22.12 35.08 −49.83 60.62 −110.02 123.05

B-CR model, rmin free −25.01 37.33 −56.35 66.12 −122.44 133.21

Five-year yield

Random walk −2.98 55.31 −11.73 68.57 −38.34 103.11

CR model −28.11 60.93 −62.11 90.52 −134.98 165.32

B-CR model, rmin ¼ 0 −27.41 63.31 −60.34 94.92 −132.49 169.35

B-CR model, rmin free −31.41 65.58 −67.18 99.19 −142.71 175.32

Ten-year yield

Random walk −8.36 67.36 −19.44 88.00 −55.95 126.57

CR model −21.59 74.46 −48.09 103.45 −115.63 167.99

B-CR model, rmin ¼ 0 −25.63 74.87 −52.74 106.28 −120.74 171.23

B-CR model, rmin free −25.97 73.41 −55.67 105.40 −125.41 171.62

Notes: Summary statistics of the forecast errors�mean and root-mean-square errors

(RMSEs)�of the three-month, two-year, five-year, and 10-year U.S. Treasury yields six

months, one year, and two years ahead. The forecasts are weekly during the zero lower bound

period that starts on December 19, 2008, and runs until May 2, 2014, for the six-month fore-

casts (281 forecasts), until November 1, 2013, for the one-year forecasts (255 forecasts), and

until November 2, 2012, for the two-year forecasts (203 forecasts). All measurements are

expressed in basis points.
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Fig. 14 shows the real-time decomposition of the 10-year Treasury yield
into a policy expectations component and a term premium component
according to the CR and B-CR models, again with a comparison to the
corresponding estimates from the KW model. Studying the time-series
patterns in greater detail, we first note the similar decompositions from the
CR and B-CR model until December 2008 � with the notable exception of
the 2002�2004 period when yields were low the last time. Second, we see
some smaller discrepancies across these two model decompositions in the
period between December 2008 and August 2011. Finally, we point out the
sustained difference in the extracted policy expectations and term premiums
in the period from August 2011 through 2012 when yields of all maturities
reached historical low levels.

Also shown in Fig. 14(a) are long-term forecasts of average short rates
from the Survey of Professional Forecasters (SPF) � specifically, the
median of respondents’ expectations for the average three-month Treasury
bill rate over the next 10 years.29 First, we note that the short-rate expecta-
tions from the survey are less variable and higher on average than those
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Fig. 14. Ten-Year Expected Short Rate and Term Premium. Notes: Panel (a)

provides real-time estimates of the average policy rate expected over the next 10

years from the CR and B-CR models, where the latter is estimated with rmin both

restricted to zero and left free. Also shown are the corresponding estimates form the

KW model and the annual forecasts of the average three-month Treasury bill rate

over the next 10 years from the SPF. Panel (b) shows the corresponding real-time
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produced by the CR and B-CR models. Second, it is clear that the KW
model’s short-rate expectations track the survey expectations quite closely.
This is not surprising since survey data, admittedly from a different source
(the Blue Chip Financial Forecasts), are used as an input in its empirical
implementation.

Finally, we note that Fig. 14 suggests that, at least through late 2011,
the ZLB did not greatly affect the term premium decomposition of the CR
model. To provide a concrete example of this, we repeat the analysis in CR
of the Treasury yield response to eight key announcements by the Fed
regarding its first large-scale asset purchase (LSAP) program. Table 7
shows the CR and B-CR model decompositions of the 10-year U.S.
Treasury yield on these eight dates and the total changes.30 The yield
decompositions on these dates are quite similar for both of these models,
though the B-CR model ascribes a bit more of the changes in yields to a
signaling channel effect adjusting short-rate expectations. Hence, the con-
clusions of CR about the effects of the Fed’s first LSAP program on U.S.
Treasury yields are robust to the use of a shadow-rate model.

4.5. Assessing Recent Shifts in Near-Term Monetary Policy Expectations

In this section, we attempt to assess the extent to which the models are able
to capture recent shifts in near-term monetary policy expectations.

To do so, we compare the variation in the models’ one- and two-year
short-rate forecasts since 2007 to the rates on one- and two-year federal
funds futures contracts as shown in Fig. 15.31 We note that the existence of
time-varying risk premiums even in very short-term federal funds futures
contracts is well documented (see Piazzesi & Swanson, 2008). However, the
risk premiums in such short-term contracts are small relative to the sizeable
variation over time observed in Fig. 15. As a consequence, we interpret the
bulk of the variation from 2007 to 2009 as reflecting declines in short-rate
expectations.

Furthermore, since August 2011, most evidence � including the low
yield volatility shown in Fig. 12 � suggests that risk premiums have been
significantly depressed, likely to a point that a zero-risk-premium assump-
tion for the futures contracts discussed here is a satisfactory approxima-
tion. Combined these observations suggest that it is defensible for most of
the shown eight-year period to map the models’ short-rate projections to
the rates on the federal funds futures contracts without adjusting for their
risk premiums.
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At the one- and two-year forecast horizons, the correlations between
the short-rate forecasts from the models and the federal funds futures
rates are all quite high. The KW model has the highest correlations, 97.7
and 95.1 percent, at the one- and two-year horizon, respectively, followed
by the B-CR model with rmin restricted to zero, which has correlations of
97.0 and 90.5 percent at the one- and two-year horizon, respectively.32

The CR model has the lowest correlations, 88.3 and 68.7 percent. If,
instead, a distance metric is used, the performance across models is more
varied. Table 8 reports the mean deviations and the root-mean-square
deviations (RMSDs) from all four models relative to the rates of the fed-
eral funds futures contracts. For the CR model, the distance to the
futures rates measured by RMSDs is 79.61 and 124.77 basis points at the
one- and two-year horizon, respectively. The KW model also shows a

Table 7. Decomposition of Responses of 10-Year U.S. Treasury Yield.

Announcement Date Model Decomposition from Models 10-Year

Treasury

YieldAvg. target rate next

10 years

10-year term

premium

Residual

Nov. 25, 2008 CR −20 0 −2 −21
B-CR −10 −10 0

Dec. 1, 2008 CR −10 −10 −2 −22
B-CR −21 2 −3

Dec. 16, 2008 CR −7 −7 −3 −17
B-CR −17 3 −3

Jan. 28, 2009 CR 6 1 5 12

B-CR 9 −2 5

Mar. 18, 2009 CR −14 −23 −15 −52
B-CR −17 −20 −14

Aug. 12, 2009 CR −1 1 6 6

B-CR −4 4 6

Sep. 23, 2009 CR −5 2 1 −2
B-CR −3 1 1

Nov. 4, 2009 CR −1 5 3 7

B-CR −1 5 3

Total net change CR −53 −29 −7 −89
B-CR −65 −17 −7

Notes: The decomposition of responses of the 10-year U.S. Treasury yield on eight LSAP

announcement dates into changes in (i) the average expected target rate over the next 10 years,

(ii) the 10-year term premium, and (iii) the unexplained residual based on the CR and B-CR

models, where the latter is estimated with rmin restricted to zero. All changes are measured in

basis points.
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poor match with RMSDs of 66.38 and 110.12 basis points at the one- and
two-year horizons, while the two shadow-rate models provide a much clo-
ser fit to the futures rates during the period under analysis. Thus, both
measured by correlations and by a distance metric, the B-CR model’s
short-rate projections appear to be better aligned with the information
reflected in rates on federal funds futures than the projections generated
by the standard CR model, and this conclusion is not sensitive to the
choice of lower bound.

5. CONCLUSION

In this paper, we study the performance of a standard Gaussian DTSM
of U.S. Treasury yields and its equivalent shadow-rate version. This pro-
vides us with a clean read on the merits of casting a standard model as a
shadow-rate model to respect the ZLB of nominal yields.
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Fig. 15. Comparison of Short-Rate Projections. Notes: Panel (a) illustrates the

one-year short-rate projections from the CR and B-CR models, where the latter is

estimated with rmin both restricted to zero and left free. Also shown are the

corresponding estimates form the KW model and the rates on one-year federal

funds futures. Panel (b) shows the corresponding results for a two-year projection

period with a comparison to the rates on two-year federal funds futures. The data

are weekly covering the period from January 5, 2007, to October 31, 2014.
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We find that the standard model performed well until the end of 2008
but underperformed since then. In the current near-ZLB yield environment,
we find that the shadow-rate model provides superior in-sample fit,
matches the compression in yield volatility unlike the standard model, and
delivers better real-time short-rate forecasts. Thus, while one could expect
the regular model to get back on track as soon as short- and medium-term
yields rise from their current low levels, our findings suggest that, in the
meantime, shadow-rate models offer a tractable way of mitigating the pro-
blems related to the ZLB constraint on nominal yields. For a practical
application of the shadow-rate model that takes advantage of its accurate
forecasts near the ZLB, see Christensen, Lopez, and Rudebusch (2015).

However, allowing for a nonzero lower bound for the short rate deter-
mined by quasi maximum likelihood provides at best only modest gains in
model performance at the cost of unrealistically large estimates of the lower
bound before the financial crisis. Thus, we consider this added complexity
unnecessary and strongly recommend setting the lower bound at zero for
U.S. Treasury yields. Of course, as the recent experience of negative sover-
eign yields in Europe demonstrates, the lower bound is not in general
always equal to zero. How to determine this possibly time-varying con-
straint on nominal yields remains an important topic for further research.
In addition, differences between yield curve dynamics in normal and ZLB
periods could reflect deeper nonlinearities in the factor structure, or maybe
even a regime switch in the factor dynamics as argued in Christensen
(2015), that are beyond the static affine dynamic structure assumed in this
paper. This also remains an open question for future research.

Table 8. Summary Statistics of Differences relative to Federal Funds
Futures Rates.

Model One-Year Contract Two-Year Contract

Mean RMSD Mean RMSD

KW model 49.54 66.38 86.84 110.12

CR model −28.73 79.61 −46.99 124.77

B-CR, rmin ¼ 0 −19.26 40.92 −47.11 76.17

B-CR, rmin free −14.56 41.68 −39.83 75.37

Notes: The mean deviations and the root-mean-square deviations (RMSDs) between the short-

rate expectations from four term structure models, on one side, and federal funds futures rates,

on the other, are reported for two contract horizons. In each case, the summary statistics are

calculated for the periods from January 5, 2007, to October 31, 2014. All numbers are mea-

sured in basis points.
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NOTES

1. Diebold and Rudebusch (2013) and Krippner (2015) provide comprehensive
discussions on the AFNS model with and without the ZLB.

2. Following Kim and Singleton (2012), the prefix “B-” refers to a shadow-rate
model in the spirit of Black (1995).

3. Kim and Priebsch (2013) estimate the lower bound in their shadow-rate
model, but do not make a comprehensive assessment of the implications of doing so.

4. Bauer and Rudebusch (2014) show that estimated shadow-rate paths are very
sensitive to the choice of lower bound, which is consistent with our results.

5. Bauer and Rudebusch (2014) is a study that uses this approach.
6. Note that a Jensen’s inequality term has been left out for the rollover strategy

in this definition.
7. Difficulties in estimating Gaussian term structure models are discussed in

Christensen et al. (2011), who propose using a Nelson�Siegel structure to avoid
them. See Joslin, Singleton, and Zhu (2011), Hamilton and Wu (2012), and
Andreasen and Christensen (2015) for alternative approaches to facilitate estimation
of Gaussian DTSMs.

8. Two details regarding this specification are discussed in Christensen et al.
(2011). First, with a unit root in the level factor under the Q-measure, the model is
not arbitrage free with an unbounded horizon; therefore, as is often done in theore-
tical discussions, we impose an arbitrary maximum horizon. Second, we identify
this class of models by normalizing the θQ means under the Q-measure to zero with-
out loss of generality.

9. As noted in Christensen et al. (2011), the unconstrained AFNS model has a
sign restriction and three parameters less than the standard canonical three-factor
Gaussian DTSM.
10. Due to the unit-root property of the first factor, we can arbitrarily fix its

mean at θP1 ¼ 0:
11. The yield data include three- and six-month Treasury bill yields from the H.15

series from the Federal Reserve Board as well as off-the-run Treasury zero-coupon
yields for the remaining maturities from the Gürkaynak, Sack, and Wright (2007)
database, which is available at http://www.federalreserve.gov/pubs/feds/2006/
200628/200628abs.html.
12. That is, a test of the joint hypothesis κP12 ¼ κP13 ¼ κP31 ¼ κP32 ¼ 0 using a stan-

dard likelihood ratio test. Note also that this test is done before imposing the unit-
root property.
13. For example, Kim and Singleton (2012) and Bomfim (2003) use finite-

difference methods to calculate bond prices, while Ichiue and Ueno (2007) employ
interest rate lattices.
14. Wu and Xia (2014) derive a discrete-time version of the Krippner framework

and implement a three-factor specification using U.S. Treasury data. In related
research, Priebsch (2013) derives a second-order approximation to the Black (1995)
shadow-rate model and estimates a three-factor version thereof, but it requires the
calculation of a double integral in contrast to the single integral needed to fit the yield
curve in the Krippner framework. Krippner (2015) provides a definitive treatment.
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15. In particular, there is no explicit partial differential equation (PDE) that
bond prices must satisfy, including boundary conditions, for the absence of arbit-
rage as in Kim and Singleton (2012).
16. For details of the derivations, see Christensen and Rudebusch (2015).
17. Due to the nonlinear measurement equation for the yields in the shadow-rate

AFNS model, estimation is based on the standard extended Kalman filter as
described in Christensen and Rudebusch (2015) and referred to as quasi maximum
likelihood. We also estimated unrestricted and independent factor shadow-rate
AFNS models and obtained similar results to those reported below.
18. That is, a test of the joint hypothesis κP12 ¼ κP13 ¼ κP31 ¼ κP32 ¼ 0 using a quasi

likelihood ratio test. As with the CR model, this test is performed before imposing
the unit-root property.
19. Consistent with our series for the 2003-period, Bomfim (2003) in his calibra-

tion of a two-factor shadow-rate model to U.S. interest rate swap data reports a
probability of hitting the zero-boundary within the next two years equaling 3.6 per-
cent as of January 2003. Thus, it appears that bond investors did not perceive the
risk of reaching the ZLB during the 2003�2004 period of low interest rates to be
material.
20. Note that for rmin → −∞ it holds that f

t
τð Þ→ ft τð Þ for any t and all τ > 0:

21. For Japan, Ichiue and Ueno (2013) impose a lower bound of nine basis
points from January 2009 to December 2012 and reduce it to five basis points there-
after. For the United States, they use a lower bound of 14 basis points starting in
November 2009. Finally, for the United Kingdom, they assume the standard ZLB
for the short rate.
22. Christensen and Rudebusch (2015) report support for zero as a lower bound

in Japanese government bond yields.
23. The conditional covariance matrix is calculated using the analytical solutions

provided in Fisher and Gilles (1996).
24. Note that other measures of realized volatility have been used in the litera-

ture, such as the realized mean absolute deviation measure as well as fitted
GARCH estimates. Collin-Dufresne et al. (2009) also use option-implied volatility
as a measure of realized volatility.
25. In their analysis of Japanese government bond yields, Kim and Singleton

(2012) also report a close match to yield volatilities for their Gaussian shadow-rate
model.
26. Appendix B contains the formulas used to calculate short-rate projections.
27. The KW model is estimated using one-, two-, four-, seven-, and 10-year off-

the-run Treasury zero-coupon yields from the Gürkaynak et al. (2007) database, as
well as three- and six-month Treasury bill yields. To facilitate empirical implementa-
tion, model estimation includes monthly data on the six- and 12-month-ahead fore-
casts of the three-month T-bill yield from Blue Chip Financial Forecasts and
semiannual data on the average expected three-month T-bill yield six to 11 years
hence from the same source. For updated data provided by the staff of the Federal
Reserve Board, see http://www.federalreserve.gov/econresdata/researchdata/
feds200533.html.
28. The details of these calculations for both the CR and B-CR model are

provided in appendices B and C.
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29. The SPF is normally performed quarterly and only include questions about
shorter-term expectations, but once a year respondents are asked about their long-
term expectations. It is the median of the responses to this question that is shown in
the figure. The data are available at http://www.philadelphiafed.org/research-and-
data/real-time-center/survey-of-professional-forecasters/.
30. Due to the computational burden of estimating the B-CR model on this daily

yield sample, we only perform this exercise for the B-CR model with rmin restricted
to zero.
31. The futures data are from Bloomberg. The one-year futures rate is the

weighted average of the rates on the 12- and 13-month federal funds futures con-
tracts, while the two-year futures rate is the rate on the 24-month federal funds
futures contract through 2010, and the weighted average of the rates on the 24- and
25-month contracts since then. The absence of data on the 24-month contracts prior
to 2007 determines the start date for the analysis.
32. The B-CR model without restrictions on rmin has one- and two-year correla-

tions of 96.4 and 89.0 percent, respectively.
33. Of course, away from the ZLB, with a negligible call option, the model will

match the standard arbitrage-free term structure representation.
34. We calculate the conditional covariance matrix using the analytical solutions

provided in Fisher and Gilles (1996).
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APPENDIX A: HOW GOOD IS THE OPTION-BASED

APPROXIMATION?

As noted in Section 3.1, Krippner (2013) does not provide a formal deriva-
tion of arbitrage-free pricing relationships for the option-based approach.
Therefore, in this appendix, we analyze how closely the option-based bond
pricing from the estimated B-CR model matches an arbitrage-free bond
pricing that is obtained from the same model using Black’s (1995) approach
based on Monte Carlo simulations. The simulation-based shadow yield
curve is obtained from 50,000 10-year long factor paths generated using the
estimated Q-dynamics of the state variables in the B-CR model, which,
ignoring the nonnegativity equation (5), are used to construct 50,000 paths
for the shadow short rate. These are converted into a corresponding num-
ber of shadow discount bond paths and averaged for each maturity before
the resulting shadow discount bond prices are converted into yields. The
simulation-based yield curve is obtained from the same underlying 50,000
Monte Carlo factor paths, but at each point in time in the simulation, the
resulting short rate is constrained by the nonnegativity equation (5) as in
Black (1995). The shadow-rate curve from the B-CR model can also be cal-
culated analytically via the usual affine pricing relationships, which ignore
the ZLB. Thus, any difference between these two curves is simply numerical
error that reflects the finite number of simulations.

To document that the close match between the option-based and the
simulation-based yield curves is not limited to any specific date where the
ZLB of nominal yields is likely to have mattered, we undertake this simula-
tion exercise for the last observation date in each year since 2006.33

Table A1 reports the resulting shadow yield curve differences and yield
curve differences for various maturities on these nine dates. Note that the
errors for the shadow yield curves solely reflect simulation error as the
model-implied shadow yield curve is identical to the analytical arbitrage-
free curve that would prevail without currency in circulation. These simula-
tion errors in Table A1 are typically very small in absolute value, and they
increase only slowly with maturity. Their average absolute value � shown
in the bottom row � is less than one basis point even at a 10-year maturity.
This implies that using simulations with a large number of draws (N ¼
50,000) arguably delivers enough accuracy for the type of inference we
want to make here.

Given this calibration of the size of the numerical errors involved in the
simulation, we can now assess the more interesting size of the approximation
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error in the option-based approach to valuing yields in the presence of the
ZLB. In Table A1, the errors of the fitted B-CR model yield curves relative
to the simulated results are only slightly larger than those reported for the
shadow yield curve. In particular, for maturities up to five years, the errors
tend to be less than 1 basis point, so the option-based approximation error
adds very little if anything to the numerical simulation error. At the 10-year
maturity, the approximation errors are understandably larger, but even the
largest errors at the 10-year maturity do not exceed 4 basis points in absolute
value and the average absolute value is less than 2 basis points. Overall, the
option-based approximation errors in our three-factor setting appear

Table A1. Approximation Errors in Yields for Shadow-Rate Model.

Dates Maturity in Months

12 36 60 84 120

12/29/06 Shadow yields 0.30 −0.73 −1.22 −1.08 −1.10
Yields 0.33 −0.71 −1.13 −0.87 −0.52

12/28/07 Shadow yields 0.17 0.02 0.65 0.86 0.79

Yields 0.22 0.16 0.85 1.18 1.28

12/26/08 Shadow yields −0.01 0.51 0.56 0.45 0.28

Yields 0.09 0.76 1.51 1.93 2.26

12/31/09 Shadow yields 0.10 0.63 1.18 1.28 1.08

Yields 0.04 0.74 1.46 1.69 1.68

12/31/10 Shadow yields −0.21 −0.11 −0.10 −0.16 0.00

Yields −0.10 0.45 0.86 1.03 1.39

12/30/11 Shadow yields 0.19 0.88 1.11 1.51 1.92

Yields −0.02 0.68 1.80 3.11 4.56

12/28/12 Shadow yields 0.11 −0.35 −0.48 −0.26 −0.09
Yields 0.13 0.35 1.28 2.48 3.79

12/27/13 Shadow yields −0.17 −0.17 0.25 0.25 0.14

Yields 0.06 0.70 1.60 2.00 2.20

10/31/14 Shadow yields 0.30 0.22 −0.10 −0.25 −0.13
Yields 0.21 0.66 0.84 1.13 1.92

Average Shadow yields 0.16 0.46 0.76 0.80 0.75

abs. diff Yields 0.13 0.55 1.27 1.76 2.21

Notes: At each date, the table reports differences between the analytical shadow yield curve

obtained from the option-based estimates of the B-CR model and the shadow yield curve

obtained from 50,000 simulations of the estimated factor dynamics under the Q-measure in

that model. The table also reports for each date the corresponding differences between the

fitted yield curve obtained from the B-CR model and the yield curve obtained via simulation

of the estimated B-CR model with imposition of the ZLB. The bottom two rows give averages

of the absolute differences across the 9 dates. All numbers are measured in basis points.
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relatively small. Indeed, they are smaller than the fitted errors to be reported
in Table 3. That is, for the B-CR model analyzed here, the gain from using a
numerical estimation approach instead of the option-based approximation
would in all likelihood be negligible.

APPENDIX B: FORMULA FOR POLICY

EXPECTATIONS IN AFNS AND B-AFNS MODELS

In this appendix, we detail how conditional expectations for future policy
rates are calculated within AFNS and B-AFNS models.

In affine models, in general, the conditional expected value of the state
variables is calculated as

EP
t Xtþ τ½ � ¼ I − exp −KPτ

� �� �
θP þ exp −KPτ

� �
Xt

In AFNS models, the instantaneous short rate is defined as

rt ¼ Lt þ St

Thus, the conditional expectation of the short rate is

EP
t rtþ τ½ � ¼ EP

t Ltþ τ þ Stþ τ½ � ¼ 1 1 0
� �

EP
t Xtþ τ½ �

In B-AFNS models, the instantaneous shadow rate is defined as

st ¼ Lt þ St

In turn, the conditional expectation of the shadow-rate process is

EP
t stþ τ½ � ¼ EP

t Ltþ τ þ Stþ τ½ � ¼ 1 1 0
� �

EP
t Xtþ τ½ �

Now, the conditional covariance matrix of the state variables is given by34

VP
t Xtþ τ½ � ¼

Z τ

0

e−KPsΣΣ0e− KPð Þ0sds
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Hence, the conditional covariance of the shadow-rate process is

VP
t stþ τ½ � ¼ 1 1 0

� �
VP
t Xtþ τ½ �

1

1

0

0
@

1
A

Finally, following equation (65) in Kim and Singleton (2012), the condi-
tional expectation of the short rate in the B-AFNS models,

rt ¼ max rmin; stð Þ

is given by

EP rtþ τ½ � ¼
Z ∞

−∞
rtþ τ f rtþ τ∣Xtð Þdrtþ τ ¼ rmin þ

Z ∞

rmin

stþ τ − rminð Þ f stþ τ∣Xtð Þdstþ τ

¼ rmin þ EP
t stþ τ½ �− rmin

� �
N

EP
t stþ τ½ �− rmin

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VP
t stþ τ½ �p

0
@

1
A

þ 1ffiffiffiffiffi
2π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VP
t stþ τ½ �

q
exp −

1

2

EP
t stþ τ½ �− rmin

� �2
VP
t stþ τ½ �

0
@

1
A

APPENDIX C: ANALYTICAL FORMULAS FOR

AVERAGES OF POLICY EXPECTATIONS AND FOR

TERM PREMIUMS IN THE CR MODEL

In this appendix, we derive the analytical formulas for averages of policy
expectations and for term premiums within the CR model.

For a start, the term premium is defined as

TPt τð Þ ¼ yt τð Þ− 1

τ

Z tþ τ

t

EP
t rs½ �ds

In the CR model, as in any AFNS model, the instantaneous short rate is
defined as

rt ¼ Lt þ St
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while the specification of the P-dynamics is given by

dLt

dSt

dCt

0
B@

1
CA¼

10−7 0 0

κP21 κP22 κP23

0 0 κP33

0
BB@

1
CCA

0

θP2

θP3

0
B@

1
CA−

Lt

St

Ct

0
B@

1
CA

2
64

3
75dtþ

σ11 0 0

0 σ22 0

0 0 σ33

0
B@

1
CA

dWL;P
t

dWS;P
t

dWC;P
t

0
BB@

1
CCA

Thus, the mean-reversion matrix is given by

KP ¼
10− 7 0 0

κP21 κP22 κP23

0 0 κP33

0
BB@

1
CCA

Its matrix exponential can be calculated analytically:

exp −KPτ
� � ¼

1 0 0

− κP21
1− e− κP

22
τ

κP22
e− κP

22
τ − κP23

e− κP
33
τ − e− κP

22
τ

κP22 − κP33

0 0 e− κP
33
τ

0
BBBB@

1
CCCCA

Now, the conditional mean of the state variables is

EP
t Xtþτ½ � ¼ θPþ

1 0 0

−κP21
1−e−κ

P
22
τ

κP22
e−κP

22
τ −κP23

e−κP
33
τ−e−κP

22
τ

κP22−κP33

0 0 e−κP
33
τ

0
BBBB@

1
CCCCA

Lt

St−θP2
Ct−θP3

0
B@

1
CA

¼

Lt

θP2 −κP21
1−e−κP

22
τ

κP22
Ltþe−κP

22
τ St−θP2
� �

−κP23
e−κ

P
33
τ−e−κ

P
22
τ

κP22−κP33
Ct−θP3
� �

θP3 þ e−κP
33
τ Ct−θP3
� �

0
BBBB@

1
CCCCA

In order to get back to the term premium formula, we note that the
conditional expectation of the instantaneous short-rate process is given
by
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EP
t rs½ � ¼ EP

t Ls þ Ss½ �

¼ 1− κP21
1− e− κP

22
s− tð Þ

κP22

0
@

1
ALt þ θP2 þ e− κP

22
s− tð Þ St − θP2
� �

− κP23
e− κP

33
s− tð Þ − e− κP

22
s− tð Þ

κP22 − κP33
Ct − θP3
� �

Next, we integrate from t to tþ τ :Z tþτ

t

EP
t rs½ �ds¼

Z tþτ

t

1−κP21
1−e−κP

22
s− tð Þ

κP22

2
4

3
5LtþθP2 þe−κP

22
s− tð Þ St−θP2
� �0

@

−κP23
e−κP

33
s− tð Þ−e−κP

22
s− tð Þ

κP22−κP33
Ct−θP3
� �1Ads

¼ θP2 τþ 1−
κP21
κP22

0
@

1
AτLtþ

κP21
κP22

Lt

Z tþτ

t

e−κP
22

s−tð Þds

þ St−θP2
� �Z tþτ

t

e−κP
22

s− tð Þds

−
κP23

κP22−κP33
Ct−θP3
� �Z tþτ

t

e−κP
33

s−tð Þ−e−κP
22

s− tð Þ

 �

ds

¼ θP2 τþ 1−
κP21
κP22

0
@

1
AτLt−

κP21
κP22

Lt
1

κP22
e−κP

22
s−tð Þ

2
4

3
5
tþτ

t

þ St−θP2
� � −1

κP22
e−κP

22
s−tð Þ

2
4

3
5
tþτ

t

−
κP23

κP22−κP33
Ct−θP3
� � −1

κP33
e−κP

33
s− tð Þþ 1

κP22
e−κP

22
s− tð Þ

2
4

3
5
tþτ

t

¼ θP2 τþ 1−
κP21
κP22

0
@

1
AτLtþ

κP21
κP22

1−e−κP
22
τ

κP22
Ltþ

1

κP22
St−θP2
� �

1−e−κP
22
τ


 �

−
κP23

κP22−κP33
Ct−θP3
� � 1

κP33
1−e−κP

33
τ

h i
−

1

κP22
1−e−κP

22
τ

h i0
@

1
A
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The relevant term to go into the term premium formula is

1

τ

Z tþ τ

t

EP
t rs½ �ds ¼ θP2 þ 1−

κP21
κP22

0
@

1
ALt þ

κP21
κP22

1− e− κP
22
τ

κP22τ
Lt þ

1− e− κP
22
τ

κP22τ
St − θP2
� �

−
κP23

κP22 − κP33

1− e− κP
33
τ

κP33τ
−
1− e− κP

22
τ

κP22τ

0
@

1
A Ct − θP3
� �

The final expression for the term premium is then given by

TPt τð Þ ¼ yt τð Þ−1

τ

Z tþτ

t

EP
t rs½ �ds

¼ Ltþ
1−e−λτ

λτ
Stþ

1−e−λτ

λτ
−e−λτ

0
@

1
ACt−

A τð Þ
τ

−θP2 − 1−
κP21
κP22

0
@

1
ALt−

κP21
κP22

1−e−κP
22
τ

κP22τ
Lt−

1−e−κP
22
τ

κP22τ
St−θP2
� �

þ κP23
κP22−κP33

1−e−κP
33
τ

κP33τ
−
1−e−κP

22
τ

κP22τ

0
@

1
A Ct−θP3
� �

¼ κP21
κP22

1−
1−e−κP

22
τ

κP22τ

0
@

1
ALtþ

1−e−λτ

λτ
−
1−e−κP

22
τ

κP22τ

0
@

1
ASt

þ 1−e−λτ

λτ
−e−λτþ κP23

κP22−κP33

1−e−κP
33
τ

κP33τ
−
1−e−κP

22
τ

κP22τ

2
4

3
5

0
@

1
ACt

− 1−
1−e−κP

22
τ

κP22τ

0
@

1
AθP2 −

κP23
κP22−κP33

1−e−κP
33
τ

κP33τ
−
1−e−κP

22
τ

κP22τ

0
@

1
AθP3 −

A τð Þ
τ

In the B-CR model, 1
τ

R tþ τ
t

EP
t rs½ �ds is not available in analytical form,

instead it has to be approximated by numerically integrating the formula
for EP

t rs½ � provided in Appendix B.
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