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Abstract

We use an arbitrage-free term structure model with spanned stochastic volatility to
determine the value of the deflation protection option embedded in Treasury infla-
tion-protected securities. The model accurately prices the deflation protection option
prior to the financial crisis when its value was near zero; at the peak of the crisis in
late 2008 when deflationary concerns spiked sharply; and in the post-crisis period.
During 2009, the average value of this option at the 5-year maturity was 41 basis
points on a par-yield basis. The option value is shown to be closely linked to overall
market uncertainty as measured by the VIX, especially during and after the 2008
financial crisis.

JEL classification: E43, E47, G12, G13

1. Introduction

The US Treasury first issued inflation-indexed bonds, which are now commonly known as

Treasury inflation-protected securities (TIPS), in 1997. TIPS provide inflation protection

since their coupons and principal payments are indexed to the headline Consumer Price

Index (CPI) produced by the Bureau of Labor Statistics.1 Importantly, TIPS also provide
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pecially our discussants Kenneth Singleton, Andrea Ajello, and Rainer Baule. We also thank partici-

pants at the FDIC’s 21st Derivatives Securities and Risk Management Conference, the Second

Humboldt-Copenhagen Conference, and the Fourth Annual SoFiE Conference for helpful comments

on previous drafts of the paper. Finally, we thank James Gillan and Justin Weidner for excellent re-

search assistance. The views in this paper are solely the responsibility of the authors and should

not be interpreted as reflecting the views of the Federal Reserve Bank of San Francisco or the

Board of Governors of the Federal Reserve System.

1 The actual indexation has a lag structure since the Bureau of Labor Statistics publishes price index

values with a 1-month lag; that is, the index for a given month is released in the middle of the subse-

quent month. The reference CPI is thus set to be a weighted average of the CPI for the second and

third months prior to the month of maturity. See Gürkaynak, Sack, and Wright (2010) for a detailed dis-

cussion as well as Campbell, Shiller, and Viceira (2009) for an overview of inflation-indexed bonds.
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some protection against price deflation since their principal payments are not permitted to

decrease below their original par value.

This deflation protection option has received limited attention in the literature, most

likely since it has not been of much value in the US inflationary environment since 1997.

However, the sharp drops in price indexes during the financial crisis that started in the fall

of 2008 increased deflationary concerns markedly, thus providing further motivation for

examining the value of this protection. Two recent papers have used different arbitrage-free

term structure models to assess the values of these deflation protection options.

Grishchenko, Vanden, and Zhang (2013) used a Gaussian affine model whose two fac-

tors are nominal Treasury rates and the inflation rate observed at the monthly frequency.

They found that the option value is close to zero for most months, except for the deflation-

ary periods observed in 2003–04 and in 2008–09. They calculate the maximum observed

option value in December 2008 to be roughly forty-five basis points of TIPS par value. On

a par-yield basis, assuming a duration of 4 years for a 5-year TIPS, this translates into a

yield spread of approximately ten basis points.

Christensen, Lopez, and Rudebusch (2012) used a “yields-only” approach based on a

Gaussian affine model developed by Christensen, Lopez, and Rudebusch (2010, henceforth

CLR) to value these deflation protection options. That model used four factors to capture the

joint dynamics of the nominal and real Treasury yield curves. The first three factors can be char-

acterized as the level, slope, and curvature of the nominal yield curve, while the fourth factor

can be characterized as the level of the real yield curve. The authors found that the option value,

measured as a par-yield spread between two TIPS of similar remaining maturity but of differing

vintages, reached a maximum of almost eighty basis points in December 2008 for TIPS matur-

ing in 2013. While the model-implied option value is highly correlated with the observed TIPS

yield spread chosen as a proxy for the deflation protection option value, the implied values are

mainly lower than the observed values. The authors suggest that this shortcoming could be ad-

dressed by incorporating stochastic volatility (SV) into the model in the hope of better charac-

terizing the lower tail of the model-implied distribution of inflation outcomes.

In this paper, we modify the latter model of nominal and real Treasury yields to incorporate

spanned SV.2 In particular, the volatility dynamics are specified to be driven by the nominal

and real level factors in the model. Using the same Treasury yield data, the SV model exhibits

similar in-sample fit and out-of-sample forecast performance relative to the constant volatility

(CV) model. Specifically, the two models’ transformations of their conditional mean specifica-

tions into such objects of interest as 5-year inflation expectations and inflation risk premiums

exhibit similar dynamics. In contrast, and more importantly for valuing the TIPS deflation pro-

tection option, the models exhibit important differences related to the transformations of their

conditional volatility specification into conditional distributions of headline CPI changes.

In particular, the 1-year deflation probability forecasts generated by the SV model are

generally higher than those generated by the CV model. As might be expected, the differing

deflation probabilities lead to clear differences in the model-implied values of the TIPS de-

flation protection option. Following Wright (2009), we measure the value of this option as

the yield spread between pairs of TIPS with similar maturities, but differing degrees of accu-

mulated inflation protection; one was recently issued and has very little accrued inflation

2 Adrian and Wu (2010) also propose a model of nominal and real Treasury yields with spanned SV.

In related research, Haubrich, Pennacchi, and Ritchken (2012) and Fleckenstein, Longstaff, and

Lustig (2013) build models of inflation swap rates with spanned SV.

2 J. H. E. Christensen et al.

 by guest on July 31, 2015
http://rof.oxfordjournals.org/

D
ow

nloaded from
 

http://rof.oxfordjournals.org/


compensation (i.e., its deflation protection option is almost at-the-money), while the other

is seasoned with plenty of accrued inflation compensation leaving its deflation protection

option far out-of-the-money. This spread therefore is a proxy for the value of the embedded

deflation protection option. As we show, the SV model generates a yield spread that more

directly captures this proxy spread in the last few months of 2008 and into 2009. In fact,

while both sets of model-implied spreads have correlations of nearly 0.9 with the proxy

spread, the SV model has a root mean squared error over 2009 of 9.5 basis points when

compared with 28.7 basis points for the CV model.

Turning to the SV model’s pricing over time, in 2008 before the Lehman bankruptcy, the

SV model-implied value of the TIPS deflation protection option at the 5-year maturity was 6.8

basis points. During the height of the crisis period in late 2008, that value jumped to 89.1 basis

points as deflationary concerns rose markedly during the sharp economic contraction. For

2009 as a whole, the average value of this option was forty-one basis points on a par-yield

basis, and that average value declined to 19.5 for 2010. These results suggest that the SV model

is well equipped to measure and price deflation risk within the Treasury market, and thus it

should be well placed to price the inflation derivatives increasingly being traded in the USA.3

With these estimates of the price of the embedded deflation protection option in hand,

we examine the market factors that might influence its value. The empirical challenge is to

assess what part of this deflation option’s value reflects deflation fears associated with gen-

eral economic uncertainty and what part is a reflection of market illiquidity and limits to

arbitrage.4 Our primary explanatory factor to account for the former is the VIX options-

implied volatility index, which represents near-term uncertainty about the general stock

market and is widely used as a gauge of investor risk aversion. We also include variables

that gauge market illiquidity, such as the economy-wide market illiquidity measure intro-

duced by Hu, Pan, and Wang (2013, henceforth HPW).

Our empirical results suggest that general economic uncertainty as reflected in the VIX

is the main factor determining the deflation option value, accounting for about 65% of its

observed variation. However, liquidity effects also play a role, particularly before and dur-

ing the 2008–09 financial crisis. Based on these results, we use our modeling structure to

produce liquidity-adjusted deflation probabilities using just the economic uncertainty com-

ponent. The adjusted values suggest that illiquidity effects do not prevent us from drawing

correct inference about when deflation risk is relevant, but they bias the assessment of the

severity of the deflation risk. Further research into this important aspect of TIPS pricing

and liquidity premiums is needed.

The paper is structured as follows. Section 2 introduces the general theoretical frame-

work for inferring deflation dynamics from nominal and real Treasury yield curves and de-

tails our proposed methodology for deriving the model-implied value of the deflation

protection option. Section 3 describes the CV and SV specifications of our term structure

model. Section 4 contains the data description and the empirical results for the two models,

while Section 5 is dedicated to an analysis of the models’ inflation distributions. Section 6

focuses on the risk of deflation and its implications for the price of the deflation protection

3 See Christensen and Gillan (2012) for further discussion of US inflation swaps and related liquidity

issues. Kitsul and Wright (2013) examine inflation caps and floors to derive option-implied inflation

probability density functions.

4 TIPS liquidity has been a concern historically and particularly at the peak of the financial crisis; see

CLR, Pflueger and Viceira (2013), and Fleckenstein, Longstaff, and Lustig (2014) for detailed discussions.
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option, while Section 7 analyzes the drivers of the model-implied deflation option values.

Section 8 concludes and provides directions for future research. The appendices contain

additional technical details and results for alternative SV specifications.

2. Pricing Deflation Risk with Treasuries and TIPS

In this section, we provide the theoretical foundation for the framework we use to price de-

flation protection options.

2.1 Deriving Market-Implied Inflation Expectations and Risk Premiums

An arbitrage-free term structure model can be used to decompose the difference between

nominal and real Treasury yields, also known as the breakeven inflation (BEI) rate, into the

sum of inflation expectations and an inflation risk premium. We follow Merton (1974) and

assume a continuum of nominal and real zero-coupon Treasury bonds exist with no fric-

tions to their continuous trading. The economic implication of this assumption is that the

markets for inflation risk are complete in the limit. Define the nominal and real stochastic

discount factors, denoted MN
t and MR

t , respectively. The no-arbitrage condition enforces a

consistency of pricing for any security over time. Specifically, the price of a nominal bond

that pays one dollar in s years and the price of a real bond that pays one unit of the defined

consumption basket in s years must satisfy the conditions that

PN
t ðsÞ ¼ EP

t

MN
tþs

MN
t

� �
and PR

t ðsÞ ¼ EP
t

MR
tþs

MR
t

� �
; (1)

where PN
t ðsÞ and PR

t ðsÞ are the observed prices of the zero-coupon, nominal and real bonds

for maturity s on day t and EP
t ½:� is the conditional expectations operator under the real-world

(or P-) probability measure. The no-arbitrage condition also requires a consistency between

the prices of real and nominal bonds such that the price of the consumption basket, denoted

as the overall price level Pt, is the ratio of the nominal and real stochastic discount factors:

Pt ¼
MR

t

MN
t

: (2)

We assume that the nominal and real stochastic discount factors have the standard dy-

namics given by

dMN
t =M

N
t ¼ �rN

t dt � C0tdWP
t ; (3)

dMR
t =M

R
t ¼ �rR

t dt � C0tdWP
t ; (4)

where rN
t and rR

t are the instantaneous, risk-free nominal and real rates of return, respect-

ively, and Ct is a vector of premiums on the risks represented by WP
t . By Ito’s lemma, the

dynamic evolution of Pt is given by

dPt ¼ ðrN
t � rR

t ÞPtdt: (5)

Thus, with the absence of arbitrage, the instantaneous growth rate of the price level is

equal to the difference between the instantaneous nominal and real risk-free rates.

Correspondingly, we can express the stochastic price level at time tþ s as

Ptþs ¼ Pte

Ð tþs
t ðrN

s � rR
s Þds: (6)

4 J. H. E. Christensen et al.
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The relationship between the yields and inflation expectations can be obtained by

decomposing the price of the nominal bond as follows:

PN
t sð Þ ¼ EP

t

MN
tþs

MN
t

� �
¼ EP

t

MR
tþs=Ptþs

MR
t =Pt

� �
¼ EP

t

MR
tþs

MR
t

Pt

Ptþs

� �
(7)

¼ EP
t

MR
tþs

MR
t

� �
� EP

t

Pt

Ptþs

� �
þ covP

t

MR
tþs

MR
t

;
Pt

Ptþs

� �
(8)

¼ PR
t sð Þ � EP

t

Pt

Ptþs

� �
� 1þ

covP
t

MR
tþs

MR
t
; Pt

Ptþs

h i
EP

t
MR

tþs

MR
t

h i
� EP

t
Pt

Ptþs

h i
0
@

1
A: (9)

Converting this price into a yield-to-maturity using

yN
t ðsÞ ¼ �

1

s
lnPN

t ðsÞ and yR
t ðsÞ ¼ �

1

s
lnPR

t ðsÞ; (10)

we obtain

yN
t ðsÞ ¼ yR

t ðsÞ þ pe
t ðsÞ þ /tðsÞ; (11)

where the market-implied average rate of inflation expected at time t for the period from t

to t þ s is

pe
t ðsÞ ¼ �

1

s
lnEP

t

Pt

Ptþs

� �
¼ �1

s
lnEP

t e�
Ð tþs
t ðrN

s � rR
s Þds

� �
(12)

and the associated inflation risk premium for the same time period is

/t sð Þ ¼ �1

s
ln 1þ

covP
t

MR
tþs

MR
t
; Pt

Ptþs

h i
EP

t
MR

tþs

MR
t

h i
� EP

t
Pt

Ptþs

h i
0
@

1
A: (13)

2.2 The Value of the Deflation Protection Embedded in Tips

The primary focus of this paper is the value of the deflation protection option embedded in

TIPS and how, during the financial crisis of 2008 and 2009, it affected the relative prices of

pairs of TIPS differentiated only by their accrued inflation compensation. Under standard

inflationary conditions with inflation rates around 2%, the value of the deflation protection

option should not play an important role in TIPS pricing since the probability of having

negative net accrued inflation compensation at maturity is negligible; that is, the option

should be well out-of-the-money. However, at the peak of the financial crisis in the fall of

2008, neither the perceived nor the priced probability of deflation were negligible as we

show in Section 6. Under these circumstances, a wedge can develop between the prices of

seasoned TIPS with a significant amount of accrued inflation compensation and recently

issued on-the-run TIPS, which have no cumulated inflation compensation. As suggested by

Wright (2009), this wedge is a proxy for the value of the TIPS deflation protection option.

To examine the ability of the proposed models to price these deflation protection op-

tions, we use the models’ implied yield curves and deflation probabilities. We calculate the

deflation protection option values by comparing the prices of a newly issued TIPS without

any accrued inflation compensation and a seasoned TIPS with sufficient accrued inflation

Pricing Deflation Risk 5
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compensation under the risk-neutral (or Q-) pricing measure. First, consider a hypothetical

seasoned TIPS with T years remaining to maturity that pays an annual coupon C semi-

annually. Assume this bond has accrued sufficient inflation compensation so it is nearly

impossible to reach the deflation floor before maturity. Under the risk-neutral pricing meas-

ure, the par-coupon bond satisfying these criteria has a coupon rate determined by the

equation

X2T

i¼1

C

2
EQ

t e�
Ð ti

t rR
s ds

� �
þ EQ

t e�
Ð T
t rR

s ds

� �
¼ 1: (14)

The first term is the sum of the present value of the 2T coupon payments using the mod-

el’s fitted real yield curve at day t. The second term is the discounted value of the principal

payment. The coupon payment of the seasoned bond that solves this equation is denoted

as CS.

Next, consider a new TIPS with no accrued inflation compensation with T years to ma-

turity. Since the coupon payments are not protected against deflation, the difference is in

accounting for the deflation protection on the principal payment. For this bond, the pricing

equation has an additional term; that is,

X2T

i¼1

C

2
E

Q
t e�

Ð ti

t rR
s ds

� �
þE

Q
t

PT

Pt
� e�
Ð T
t rN

s ds1 PT
Pt
>1

� �� �
þE

Q
t 1 � e�

Ð T
t rN

s ds1 PT
Pt
�1

� �� �
¼ 1: (15)

The first term is the same as before. The second term represents the present value of the

principal payment conditional on a positive net change in the price index over the bond’s

maturity; that is, PT

Pt
> 1. Under this condition, full inflation indexation applies, and the

price change PT

Pt
is placed within the expectations operator. The third term represents the

present value of the floored TIPS principal conditional on accumulated net deflation; that

is, when the price level change is below one, PT

Pt
is replaced by a value of 1 to provide

the promised deflation protection.

Since

PT

Pt
¼ e

Ð T
t ðrN

s � rR
s Þds; (16)

the equation can be rewritten as

X2T

i¼1

C

2
E

Q
t e�

Ð ti

t rR
s ds

� �
þE

Q
t e�

Ð T
t rR

s ds

� �
þ E

Q
t e�

Ð T
t rN

s ds1 PT
Pt
�1

� �� �
�E

Q
t e�

Ð T
t rR

s ds1 PT
Pt
�1

� �� �� �
¼1;

(17)

where the last term on the left-hand side represents the net present value of the deflation

protection of the principal in the TIPS contract. The par-coupon yield of a new hypothetical

TIPS that solves this equation is denoted as C0. The difference between CS and C0 is a meas-

ure of the advantage of being at the inflation adjustment floor for a newly issued TIPS and

thus of the value of the embedded deflation protection option.

3. Models of Nominal and Real Treasury Yield Curves

Given the theoretical framework introduced in the previous section, we briefly summarize

the affine term structure model of nominal and real Treasury yields with CV developed

6 J. H. E. Christensen et al.
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by CLR and then introduce the modified version with stochastic yield volatility. We

emphasize that even though the models are not formulated using the canonical form of

affine term structure models introduced by Dai and Singleton (2000), both models can be

viewed as restricted versions of their respective canonical model. Furthermore, it can be

noted that most of the restrictions imposed are motivated by a desire to generate a factor

loading structure in the zero-coupon bond yield functions that closely matches the popular

Nelson and Siegel (1987) model and hence obtain models which are well identified and

easy to estimate.

3.1 The CV Model

The joint four-factor CV model of nominal and real yields is a direct extension of the

three-factor, arbitrage-free Nelson–Siegel (AFNS) model developed by Christensen,

Diebold, and Rudebusch (2011, henceforth CDR) for nominal yields. In the CV model,

the state vector is denoted by Xt ¼ ðLN
t ; St;Ct;L

R
t Þ, where LN

t is the level factor for nom-

inal yields, St is the common slope factor, Ct is the common curvature factor, and LR
t is

the level factor for real yields. The instantaneous nominal and real risk-free rates are

defined as:

rN
t ¼ LN

t þ St; (18)

rR
t ¼ LR

t þ aRSt: (19)

Note that the differential scaling of the real rates to the common slope factor is captured

by the parameter aR. To preserve the Nelson–Siegel factor loading structure in the yield

functions, the risk-neutral (or Q-) dynamics of the state variables are given by the stochastic

differential equations:

dLN
t

dSt

dCt

dLR
t

0
BBBBB@

1
CCCCCA ¼

0 0 0 0

0 �k k 0

0 0 �k 0

0 0 0 0

0
BBBBB@

1
CCCCCA

LN
t

St

Ct

LR
t

0
BBBBB@

1
CCCCCAdt þ R

dWLN ;Q
t

dW
S;Q
t

dW
C;Q
t

dWLR ;Q
t

0
BBBBBB@

1
CCCCCCA
; (20)

where R is the constant covariance (or volatility) matrix. Based on this specification of the

Q-dynamics, nominal Treasury zero-coupon bond yields preserve the Nelson–Siegel factor

loading structure as

yN
t ðsÞ ¼ LN

t þ
1� e�ks

ks

� �
St þ

1� e�ks

ks
� e�ks

� �
Ct �

ANðsÞ
s

; (21)

where ANðsÞ=s is a maturity-dependent yield-adjustment term. Similarly, real TIPS zero-

coupon bond yields have a Nelson–Siegel factor loading structure expressed as

yR
t ðsÞ ¼ LR

t þ aR 1� e�ks

ks

� �
St þ aR 1� e�ks

ks
� e�ks

� �
Ct �

ARðsÞ
s

: (22)

Note that ARðsÞ=s is another maturity-dependent yield-adjustment term. These two

equations, when combined in state–space form, constitute the measurement equation

needed for Kalman filter estimation.

Pricing Deflation Risk 7
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To complete the model, we define the price of risk, which links the risk-neutral and real-

world yield dynamics, using the essentially affine risk premium specification introduced by

Duffee (2002). The real-world dynamics of the state variables are then expressed as

dXt ¼ KPðhP �XtÞdt þ RdWP
t ; (23)

which in its most general form can be written as

dLN
t

dSt

dCt

dLR
t

0
BBBBB@

1
CCCCCA ¼

jP
11 jP

12 jP
13 jP

14

jP
21 jP

22 jP
23 jP

24

jP
31 jP

32 jP
33 jP

34

jP
41 jP

42 jP
43 jP

44

0
BBBBB@

1
CCCCCA

hP
1

hP
2

hP
3

hP
4

0
BBBBB@

1
CCCCCA�

LN
t

St

Ct

LR
t

0
BBBBB@

1
CCCCCA

0
BBBBB@

1
CCCCCAdt þ R

dWLN ;P
t

dWS;P
t

dWC;P
t

dWLR ;P
t

0
BBBBB@

1
CCCCCA: (24)

This equation is the transition equation used in the Kalman filter estimation.

3.2 The SV Model

Financial time series, such as interest rates and bond yields, have been shown to have time-

varying volatility, which is a feature not often incorporated into arbitrage-free term structure

models; see Andersen and Benzoni (2010) for further discussion. To address this concern,

Christensen, Lopez, and Rudebusch (2014a) develop a general class of AFNS models that in-

corporate spanned SV. To distinguish between the various types of models, we use the nota-

tion outlined in Dai and Singleton (2000) for classifying affine term structure models, such

that the CV model is within the A0ð4Þ class of models that do not have volatility dynamics.

As detailed in Christensen, Lopez, and Rudebusch (2014a), there are several possible volatil-

ity specifications within their three-factor framework, and clearly, the introduction of the

fourth factor within the CLR model generates an even larger set of possible specifications.

For this paper, we chose an A2ð4Þ volatility specification that incorporates SV based on

the nominal and real level factors.5 This choice was motivated by a desire to focus on the

longer maturity TIPS yields, since observable proxies for the value of the TIPS deflation

protection option are most available near the 5-year maturity point. For this SV model, the

state vector and instantaneous risk-free rates are the same as before. To preserve

the Nelson–Siegel factor loading structure and impose our volatility specification, the

Q-dynamics of the state variables are given by6

dLN
t

dSt

dCt

dLR
t

0
BBBBB@

1
CCCCCA ¼

jQ
LN 0 0 0

0 k �k 0

0 0 k 0

0 0 0 jQ
LR

0
BBBBB@

1
CCCCCA

hQ
LN

0

0

hQ
LR

0
BBBBB@

1
CCCCCA�

LN
t

St

Ct

LR
t

0
BBBBB@

1
CCCCCA

2
666664

3
777775dt (25)

5 In Appendix D, we summarize results for all seven admissible extensions of the CV model with one or

two spanned SV factors (i.e., A1ð4Þ and A2ð4Þ models). Note that the results for these alternative models

are qualitatively similar, although quantitatively worse than the A2ð4Þ specification we focus on here.

6 While the modeling framework allows for the two level factors to directly affect the volatility of the

common slope and curvature factors, we fix the associated volatility sensitivity parameters to zero

as in Christensen, Lopez, and Rudebusch (2014a), who report that these volatility sensitivity param-

eters are typically insignificant for US Treasury data. This choice leads to analytical bond pricing

formulas that greatly facilitate model estimation and analysis.

8 J. H. E. Christensen et al.
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þ

r11 0 0 0

0 r22 0 0

0 0 r33 0

0 0 0 r44

0
BBBBB@

1
CCCCCA

ffiffiffiffiffiffiffi
LN

t

p
0 0 0

0
ffiffiffi
1
p

0 0

0 0
ffiffiffi
1
p

0

0 0 0
ffiffiffiffiffiffi
LR

t

p

0
BBBBB@

1
CCCCCA

dW
LN ;Q
t

dW
S;Q
t

dW
C;Q
t

dWLR ;Q
t

0
BBBBBB@

1
CCCCCCA
: (26)

The representation of the nominal zero-coupon bond yield function becomes

yN
t sð Þ ¼ gN jQ

LN

	 

LN

t þ
1� e�ks

ks

� �
St þ

1� e�ks

ks
� e�ks

� �
Ct �

AN s; jQ
LN

	 

s

; (27)

where gNðjQ
LN Þ is a modified loading on the nominal level factor; see Appendix A for details.

Note that the slope and the curvature factor preserve their Nelson–Siegel factor loadings

exactly, although the structure of the yield-adjustment term ANðs; jQ
LN Þ=s is different than

before. Correspondingly, the real zero-coupon bond yield function is now

yR
t ðsÞ ¼ gRðjQ

LRÞLR
t þ aR 1� e�ks

ks

� �
St þ aR 1� e�ks

ks
� e�ks

� �
Ct �

ARðs; jQ
LR Þ

s
; (28)

where gRðjQ
LR Þ is a modified loading on the real level factor and ARðs; jQ

LR Þ=s is a modified

yield-adjustment term.

To link the risk-neutral and real-world dynamics of the state variables, we here use the

extended affine risk premium specification introduced by Cheridito, Filipović, and Kimmel

(2007), as per Christensen, Lopez, and Rudebusch (2014a). The maximally flexible affine

specification of the P-dynamics is thus

dLN
t

dSt

dCt

dLR
t

0
BBBBB@

1
CCCCCA ¼

jP
11 0 0 jP

14

jP
21 jP

22 jP
23 jP

24

jP
31 jP

32 jP
33 jP

34

jP
41 0 0 jP

44

0
BBBBB@

1
CCCCCA

hP
1

hP
2

hP
3

hP
4

0
BBBBB@

1
CCCCCA�

LN
t

St

Ct

LR
t

0
BBBBB@

1
CCCCCA

2
666664

3
777775dt (29)

þ

r11 0 0 0

0 r22 0 0

0 0 r33 0

0 0 0 r44

0
BBBBB@

1
CCCCCA

ffiffiffiffiffiffiffi
LN

t

p
0 0 0

0
ffiffiffi
1
p

0 0

0 0
ffiffiffi
1
p

0

0 0 0
ffiffiffiffiffiffi
LR

t

p

0
BBBBB@

1
CCCCCA

dWLN ;P
t

dWS;P
t

dWC;P
t

dWLR ;P
t

0
BBBBB@

1
CCCCCA: (30)

To keep the model arbitrage-free, the two level factors must be prevented from hitting

the lower zero-boundary. This positivity requirement is ensured by imposing the Feller con-

ditions under both probability measures, which in this case are four; that is,

jP
11h

P
1 þ jP

14h
P
4 >

1

2
r2

11;

10�7 � hQ
LN >

1

2
r2

11;

jP
41h

P
1 þ jP

44h
P
4 >

1

2
r2

44;
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and

10�7 � hQ
LR >

1

2
r2

44:

Furthermore, to have well-defined processes for LN
t and LR

t , the sign of the effect that

these two factors have on each other must be positive, which requires the restrictions that

jP
14�0 and jP

41�0:

These conditions ensure that the two square-root processes will be non-negatively

correlated.7

3.2.a. Deflation probabilities within the SV model

Christensen, Lopez, and Rudebusch (2012) use the CV model to generate deflation proba-

bilities at various horizons appropriate for macroeconomic and monetary policy purposes.

Similarly, the SV model can be used to calculate deflation probabilities, although additional

steps are necessary.

The change in the price index implied by the model’s “yields-only” approach for the

period from t to t þ s is given by

Ptþs

Pt
¼ e

Ð tþs
t ðrN

s � rR
s Þds: (31)

To determine whether the change in the price index over a s-period horizon may be below

a critical level q, we are interested in the probability of the states where

Ptþs

Pt
� 1þ q; (32)

or, equivalently,

Yt;s ¼
ðtþs

t

ðrN
s � rR

s Þds� lnð1þ qÞ: (33)

Given that rN
t ¼ LN

t þ St and rR
t ¼ LR

t þ aRSt, we are interested in the distributional

properties of the process

Y0;t ¼
ðt

0

ðrN
s � rR

s Þds¼
ðt

0

ðLN
s þSs�LR

s �aRSsÞds ) dY0;t ¼ðLN
t þð1�aRÞSt�LR

t Þdt:

(34)

This process is then introduced into the system of equations containing the P-dynamics of

the state variables Xt.

Due to the introduction of SV into the two level factors, this system of equations no

longer has Gaussian state variables. As a consequence, we must use the Fourier transform

7 Our empirical results show that the Feller condition pertaining to the real yield level factor LR
t under

the Q-measure is systematically binding, while the other three Feller conditions are never binding.

Thus, it is mainly the dynamics of LR
t that are affected by the imposition of the Feller conditions,

most notably r44. For robustness, we analyzed the specification of the SV model without Feller con-

ditions imposed, but found it to underperform along multiple dimensions relative to the reported SV

model with Feller conditions imposed. Results for this alternative specification and analysis are

available upon request.
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analysis described in full generality for affine models in Duffie, Pan, and Singleton (2000),

as opposed to the approach detailed in Christensen, Lopez, and Rudebusch (2012) for the

CV model. The intuition of this approach is to express expectations of contingent payments

in a tractable, mathematical form. By simplifying these expectations to indicator variables

such as 1ðYt;s � lnð1þqÞÞ, event probabilities are readily generated; see Appendix C for details.

3.3 Model Estimation

While the SV model maintains linear measurement equations, its factor dynamics are non-

Gaussian as noted above, which prevents us from using some of the recently proposed esti-

mation techniques, such as Joslin, Singleton, and Zhu (2011). Instead, the estimation of

both models relies on the Kalman filter as in CLR and Christensen, Lopez, and Rudebusch

(2012); that is, nominal and real zero-coupon yields are affine functions of the state vari-

ables such that

ytðsÞ ¼ �
1

s
BðsÞ0Xt �

1

s
AðsÞ þ etðsÞ; (35)

where etðsÞ are assumed to be i.i.d. Gaussian errors. The conditional mean for multi-dimen-

sional affine diffusion processes is given by

EP½XT jXt� ¼ ðI � expð�KPðT � tÞÞÞhP þ expð�KPðT � tÞÞXt; (36)

where expð�KPðT � tÞÞ is a matrix exponential. In general, the conditional covariance ma-

trix for affine diffusion processes is given by

VP½XT jXt� ¼
ðT

t

expð�KPðT � sÞÞRDðEP½XsjXt�ÞDðEP½XsjXt�Þ0R0expð�ðKPÞ0ðT � sÞÞds:

(37)

Stationarity of the system under the P-measure is ensured if the real components of all

the eigenvalues of KP are positive, and this condition is imposed in all estimations. For

this reason we can start the Kalman filter at the unconditional mean and covariance ma-

trix.8 However, the introduction of SV in the SV model implies that the factors are no

longer Gaussian since their variances are now dependent on the path of the state vari-

ables. For tractability, we choose to approximate the true probability distribution of the

state variables using the first and second moments described above and use the Kalman

filter algorithm as if the state variables were Gaussian.9 The state equation is given by

Xt ¼ ðI � expð�KPDtÞÞhP þ expð�KPDtÞXt�1 þ gt; gt � Nð0;Vt�1Þ; (38)

8 In the estimation, we calculate the conditional and unconditional covariance matrices using the

analytical solutions provided in Fisher and Gilles (1996), which differs from the previous studies by

CLR and Christensen, Lopez, and Rudebusch (2012) that relied upon numerical approximations.

9 A few notable examples of papers that follow this QMLE approach include Duffee (1999), Driessen

(2005), and Feldhütter and Lando (2008). An unreported simulation analysis suggests that the added

bias from using the Kalman filter in estimating the SV model is modest relative to the finite-sample

bias that even the CV model is subject to.
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where Dt is the time between observations and Vt�1 is the conditional covariance matrix

given in Equation (37). In the Kalman filter estimations, the error structure is given by

gt

et

 !
� N

0

0

 !
;

Vt�1 0

0 H

 !" #
;

where H is assumed to be a diagonal matrix of the measurement error standard deviations,

reðsiÞ, that are specific to each yield maturity in the data set. Furthermore, the discrete

nature of the transition equation can cause the square-root processes to become negative

despite the fact that the parameter sets are forced to satisfy Feller conditions and other non-

negativity restrictions. Whenever this happens, we follow the literature and simply truncate

those processes at zero; see Duffee (1999) for an example.

4. Empirical Analysis

In this section, we detail the data used for model estimation, describe how we arrive at a

preferred specification for each model, and provide a brief comparison of the models’ fit.

4.1 Data

In this paper, the nominal Treasury bond yields used are zero-coupon yields constructed as

in Gürkaynak, Sack, and Wright (2007).10 These yields are constructed using a discount

function of the Svensson (1995)-type to minimize the pricing error of a large pool of under-

lying off-the-run Treasury bonds. As demonstrated by Gürkaynak, Sack, and Wright

(2007), the model fits the underlying pool of bond prices extremely well. By implication,

the zero-coupon yields derived from this approach constitute a very good approximation of

the underlying Treasury zero-coupon yield curve. From this data set, we use eight Treasury

zero-coupon bond yields with maturities of 3 months, 6 months, 1 year, 2 years, 3 years, 5

years, 7 years, and 10 years. We use weekly Friday data and limit our sample to the period

from January 6, 1995, to December 31, 2010, which provides us with 835 weekly observa-

tions.11 Similarly, for the real Treasury yields, we use the zero-coupon bond yields con-

structed with the same method used by Gürkaynak, Sack, and Wright (2010).12 The data

are available from January 1999, but due to weak liquidity in the first years of TIPS trading,

we follow CLR and limit our sample to the period after 2002. We have weekly real

Treasury yields from January 2, 2003, to December 31, 2010, a total of 418 observations.

Since our focus is on the long-term real yields, we use the six yearly maturities from 5 to 10

years.

10 The Board of Governors of the Federal Reserve updates the data on its website at http://www.fed-

eralreserve.gov/pubs/feds/2006/index.html.

11 We end the sample in 2010 to avoid having to address the complex problem of respecting the zero

lower bound for nominal yields, which appears to have been severe since August 2011 when the

FOMC first provided explicit forward guidance for future monetary policy. To support the view that

this was less critical in 2009 and 2010, we point to Swanson and Williams (2014), who provide evi-

dence that medium- and long-term Treasury yields responded to economic news during those 2

years in much the same way as in the prior decades.

12 This dataset is also maintained by the Board of Governors of the Federal Reserve System at

http://www.federalreserve.gov/pubs/feds/2008/index.html.

12 J. H. E. Christensen et al.
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4.2 Estimation Results

To select the best-fitting specifications of each model’s real-world dynamics, we use a

general-to-specific modeling strategy that restricts the least significant parameter in the esti-

mation to zero and then re-estimates the model. This strategy of eliminating the least sig-

nificant coefficients is carried out down to the most parsimonious specification, which has

a diagonal KP matrix. The final specification choice is based on the values of the Akaike

and Bayesian information criteria as per CLR.

For the CV model, the summary statistics of the model selection process are reported in

Table I. Both information criteria are minimized by specification (9), which has a KP matrix

specified as

KP
CV ¼

jP
11 0 0 0

jP
21 jP

22 jP
23 0

0 0 jP
33 0

jP
41 jP

42 0 jP
44

0
BBBBB@

1
CCCCCA:

Table II contains the estimated parameters for this specification. All the off-diagonal

elements are highly significant and consistent with the empirical results reported in CLR. In

terms of dynamic properties, the nominal level factor is a persistent, slowly varying process

not affected by any of the other factors. The common curvature factor is also unaffected by

the other factors, but is less persistent and more volatile. The common slope factor is in be-

tween these two extremes as it is less persistent than the nominal level factor and less vola-

tile than the curvature factor. Finally, the real level factor is the least persistent factor likely

due to the shorter sample of real yields.

Turning to the chosen specification of the SV model, Table III contains the summary

statistics of its model selection. For reasons of parsimony, we choose to focus on the specifi-

cation preferred according to the BIC with a mean-reversion matrix given by

KP
SV ¼

jP
11 0 0 0

0 jP
22 jP

23 0

0 0 jP
33 0

0 0 0 jP
44

0
BBBBB@

1
CCCCCA:

Compared with the preferred specification of the CV model, jP
21 and jP

41 are jointly only

borderline significant, while jP
42 is not admissible.

The estimated parameters for this preferred specification are reported in Table IV. The

most notable difference relative to the results for the CV model is that the nominal level fac-

tor is less persistent, while the real level factor is more persistent. Furthermore, for obvious

reasons, r11 and r44 operate at different levels now due to the introduction of SV through

the first and fourth factor. However, as we show later on, these differences do not lead to

major differences in the models’ first moment dynamics.

Table V contains summary statistics for the fitted errors from both models. For the nom-

inal yields, the CV model fits the very short end of the nominal yield curve relatively better

than the longer maturities in the 1- to 10-year maturity range. In contrast, the SV model

provides a better in-sample fit in the 1- to 10-year maturity range, but less accurate fit

for short-maturity yields. For the real yields, though, the SV model provides a significant

Pricing Deflation Risk 13

 by guest on July 31, 2015
http://rof.oxfordjournals.org/

D
ow

nloaded from
 

http://rof.oxfordjournals.org/


overall improvement in model fit relative to the CV model, which is the main cause for the

large difference in likelihood values.

In the remainder of the paper, we analyze the performance of the two models in greater

detail using real-time analysis that adds 1 week of additional data to the estimation sample

Table I. Evaluation of alternative specifications of the CV model

Thirteen alternative estimated specifications of the CV model of nominal and real Treasury

bond yields are evaluated. Each specification is listed with its maximum log likelihood (Max

logL), number of parameters (k), the P-value from a likelihood ratio test of the hypothesis that

the specification differs from the one directly above that has one more free parameter. The in-

formation criteria (AIC and BIC) are also reported, and their minimum values are given in

boldface.

Alternative specifications Goodness-of-fit statistics

Max logL k P-value AIC BIC

(1) Unrestricted KP 52,561.05 40 n.a. �105,042.1 �104,853.0

(2) jP
24 ¼ 0 52,560.99 39 0.73 �105,044.0 �104,859.6

(3) jP
24 ¼ jP

32 ¼ 0 52,560.89 38 0.65 �105,045.8 �104,866.1

(4) jP
24 ¼ jP

32 ¼ jP
43 ¼ 0 52,560.76 37 0.61 �105,047.5 �104,872.6

(5) jP
24 ¼ � � � ¼ jP

12 ¼ 0 52,560.58 36 0.55 �105,049.2 �104,879.0

(6) jP
24 ¼ � � � ¼ jP

13 ¼ 0 52,560.52 35 0.73 �105,051.0 �104,885.6

(7) jP
24 ¼ � � � ¼ jP

14 ¼ 0 52,559.97 34 0.29 �105,051.9 �104,891.2

(8) jP
24 ¼ � � � ¼ jP

31 ¼ 0 52,559.40 33 0.29 �105,052.8 �104,896.8

(9) jP
24 ¼ � � � ¼ jP

34 ¼ 0 52,558.84 32 0.29 �105,053.7 �104,902.4

(10) jP
24 ¼ � � � ¼ jP

21 ¼ 0 52,549.96 31 <0.01 �105,037.9 �104,891.4

(11) jP
24 ¼ � � � ¼ jP

42 ¼ 0 52,542.19 30 <0.01 �105,024.4 �104,882.6

(12) jP
24 ¼ � � � ¼ jP

41 ¼ 0 52,533.33 29 <0.01 �105,008.7 �104,871.6

(13) jP
24 ¼ � � � ¼ jP

23 ¼ 0 52,516.58 28 <0.01 �104,977.2 �104,844.8

Table II. Parameter estimates for the preferred CV model

The estimated parameters of the KP matrix, hP vector, and diagonal R matrix are shown for the

specification of the CV model preferred according to both AIC and BIC information criteria. The

estimated value of k is 0.5016 (0.0034), while aR is estimated to be 0.5600 (0.0056). The numbers

in parentheses are the estimated parameter standard deviations. The maximum log likelihood

value is 52,558.84.

KP KP
�;1 KP

�;2 KP
�;3 KP

�;4 hP R

KP
1;� 0.3483 0 0 0 0.0637 r11 0.0059

(0.2528) (0.0045) (0.0002)

KP
2;� 1.4559 0.8185 �0.8148 0 �0.0289 r22 0.0087

(0.4738) (0.1678) (0.1152) (0.0174) (0.0002)

KP
3;� 0 0 0.5416 0 �0.0175 r33 0.0297

(0.2897) (0.0135) (0.0006)

KP
4;� �4.1070 �0.6406 0 3.1116 0.0372 r44 0.0068

(0.5491) (0.1874) (0.3428) (0.0047) (0.0001)

14 J. H. E. Christensen et al.
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for each model estimation; that is, each model is estimated using the sample covering the

12-year period from January 6, 1995, to January 5, 2007, and relevant model output is cal-

culated; then, 1 week of data is added to the sample and the models are re-estimated, and

another set of model output is constructed. This process is continued until the sample ends

on December 31, 2010.

5. Analysis of the Model-Implied Inflation Distributions

In this section, we analyze the properties of the model-implied inflation distributions

from the CV and SV models. First, we evaluate the models’ conditional inflation

Table IV. Parameter estimates for the preferred SV model

The estimated parameters of the KP matrix, the hP vector, and the R matrix for the preferred

specification of the SV model according to the BIC. The Q-related parameters are estimated

at: k ¼ 0:6067 (0.0025), aR ¼ 0:4397 (0.0068), hQ
LN ¼ 32,419 (31.67), and hQ

LR ¼ 17,846 (47.15). The

numbers in parentheses are the estimated standard deviations of the parameter estimates.

The maximum log likelihood value is 54,470.80.

KP KP
�;1 KP

�;2 KP
�;3 KP

�;4 hP R

KP
1;� 1.0431 0 0 0 0.0425 r11 0.0633

(0.4193) (0.0045) (0.0006)

KP
2;� 0 0.6711 �0.6248 0 �0.0118 r22 0.0130

(0.1867) (0.1549) (0.0143) (0.0003)

KP
3;� 0 0 0.6915 0 �0.0076 r33 0.0303

(0.1966) (0.0119) (0.0007)

KP
4;� 0 0 0 1.4203 0.0168 r44 0.0597

(0.1914) (0.0017) (0.0007)

Table III. Evaluation of alternative specifications of the SV model

Nine alternative estimated specifications of the SV model of nominal and real Treasury bond

yields are evaluated. Each specification is listed with its log likelihood (Max logL), number of

parameters (k), the P-value from a likelihood ratio test of the hypothesis that the specification

differs from the one directly above that has one more free parameter. The information criteria

(AIC and BIC) are also reported, and their minimum values are given in boldface.

Alternative specifications Goodness-of-fit statistics

Max logL k P-value AIC BIC

(1) Unrestricted KP 54,479.99 38 n.a. �108,884.0 �108,704.3

(2) jP
34 ¼ 0 54,479.99 37 1.00 �108,886.0 �108,711.1

(3) jP
34 ¼ jP

24 ¼ 0 54,479.85 36 0.60 �108,887.7 �108,717.5

(4) jP
34 ¼ jP

24 ¼ jP
31 ¼ 0 54,479.26 35 0.28 �108,888.5 �108,723.1

(5) jP
34 ¼ � � � ¼ jP

32 ¼ 0 54,479.12 34 0.60 �108,890.2 �108,729.5

(6) jP
34 ¼ � � � ¼ jP

21 ¼ 0 54,477.19 33 0.05 �108,888.4 �108,732.4

(7) jP
34 ¼ � � � ¼ jP

41 ¼ 0 54,473.33 32 < 0.01 �108,882.7 �108,731.4

(8) jP
34 ¼ � � � ¼ jP

14 ¼ 0 54,470.80 31 0.02 �108,879.6 �108,733.0

(9) jP
31 ¼ � � � ¼ jP

23 ¼ 0 54,437.41 30 < 0.01 �108,814.8 �108,673.0
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expectations by comparing them with inflation swap rates and survey forecasts. Second,

we highlight the models’ differential estimates of the risk of tail outcomes in the form

of low and high inflation. Overall, the purpose is to demonstrate the distributional limita-

tions of models with CV, while showcasing the advantages that models with SV may

provide.

5.1 Conditional Inflation Expectations

A key purpose of our joint models of nominal and real yields is to decompose BEI rates into

inflation expectations and inflation risk premiums for further analysis. To conduct this ana-

lysis, we generate real-time, out-of-sample forecasts based on the rolling model estimation

procedure described previously.

Figure 1 illustrates the models’ expected inflation at the 5-year horizon as well as the 5-

year zero-coupon inflation swap rate and the median of the 5-year CPI inflation forecast

from the Survey of Professional Forecasters (SPFs). Similar to the inflation swap rate, the

CV and SV models produce sharp declines in expected inflation shortly after the Lehman

Brothers bankruptcy in September 2008, which is consistent with realized inflation; that is,

headline CPI did register negative year-over-year changes during 2009 for the first time

since 1955. Since the beginning of 2009, the two models suggest that medium-term infla-

tion expectations have stabilized, but at a lower level than what prevailed prior to the fi-

nancial crisis. This downward shift is consistent with the downward trend in the SPF survey

Table V. Summary statistics of the fitted errors

The mean and RMSE for the preferred specification of the CV and SV models are shown. All

numbers are measured in basis points. The nominal yields cover the period from January 6,

1995, to December 31, 2010, while the real TIPS yields cover the period from January 3, 2003, to

December 31, 2010.

Maturity in months CV model SV model

Nominal yields Mean RMSE r̂eðsiÞ Mean RMSE r̂eðsiÞ

3 �0.54 9.53 9.51 0.75 19.23 19.22

6 0.00 0.00 0.00 �0.17 8.23 8.24

12 1.79 5.80 5.79 0.00 0.00 0.00

24 2.22 3.98 4.00 0.46 1.56 1.56

36 0.00 0.13 0.55 0.00 0.00 0.00

60 �2.67 3.73 3.83 �0.28 1.27 1.38

84 0.08 3.37 3.66 0.24 0.59 1.14

120 9.53 12.03 12.15 �1.15 4.41 4.59

TIPS yields Mean RMSE r̂eðsiÞ Mean RMSE r̂eðsiÞ
60 �3.98 20.27 20.20 �2.04 13.59 13.59

72 �2.60 12.23 12.18 �0.51 5.87 5.86

84 �1.31 5.64 5.61 0.00 0.00 0.00

96 0.00 0.00 0.00 �0.38 4.72 4.72

108 1.35 4.94 4.90 �1.52 8.74 8.74

120 2.74 9.32 9.25 �3.32 12.35 12.35

Max logL 52,558.84 54,470.80
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measure, but notably larger. Furthermore, it appears consistent with the trend in CPI real-

izations, which has shifted down.13

In Figure 2(a), the 1-year inflation forecasts from the two models are compared with the

corresponding survey forecasts provided by Blue Chip and the 1-year inflation swap rate.

The survey forecasts are very stable and typically favored by macroeconomists. The infla-

tion swap rates represent financial market forecasts of inflation without correction for risk

premiums, which explains their relative volatility. We note that our market-based models

strike a balance in between these two alternative inflation forecasts with a tendency to be

closer aligned with the inflation swap rate forecast. Figure 2(b) compares our model fore-

casts to the subsequent headline CPI realizations. As is common in the literature, both the

model- and survey-based forecasts are challenged in capturing the large variation in head-

line CPI.14 However, to compare the various forecasts in relative terms, Table VI reports
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Figure 1. Estimated 5-year inflation expectations.

Illustration of the estimated inflation expectations at the 5-year horizon under the objective P probabil-

ity measure according to the CV and SV models. Included are the 5-year zero-coupon inflation swap

rate downloaded from Bloomberg and the median 5-year forecast of headline CPI inflation from the

Survey of Professional Forecasters.

13 From the beginning of 2006 until the end of June 2008, the average annual rate of headline CPI in-

flation was logð218:815=195:3Þ=2:5 ¼ 4.5%, while the average annual rate from mid-2008 through

2010 was a modest logð219:179=218:815Þ=2:5 ¼ 0.1%.

14 See Stock and Watson (2007) and Trehan (2015) for further discussion.
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the results of aligning the model-generated inflation forecasts with the release dates of the

Blue Chip survey and calculating the forecast errors for the 48 months from January 2007

to December 2010. In terms of matching headline CPI inflation, our two models are close

behind the Blue Chip survey forecasts and are clearly better than the random walk and the

1-year inflation swap rate as measured by root mean squared fitted errors (RMSEs). This

result suggests that both models are able to capture relatively well and in real time the first

moment dynamics of the inflation process.

Table VI. Comparison of real-time CPI inflation forecasts

Summary statistics for 1-year forecast errors of headline CPI infla-

tion in real time. The Blue Chip forecasts are mapped to the 10th of

each month from January 2007 to December 2010, a total of 48

monthly forecasts. The comparable model forecast is generated on

the nearest available business day prior to the Blue Chip release. A

similar principle is used for the collection of the corresponding infla-

tion swap rate forecast. The subsequent CPI realizations are year-

over-year changes starting at the end of the survey month. As a

consequence, the random walk forecasts equal the past year-over-

year change in the CPI series as of the end of the survey month.

Model Mean RMSE

Random Walk 7.36 316.48

Blue Chip 5.71 209.42

Inflation swap 84.30 283.67

CV model 74.37 219.86

SV model 96.55 232.43
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Figure 2. One-year CPI inflation forecasts.

Panel (a) shows the 1-year inflation forecasts under the objective P probability measure from the

CV and SV models with a solid gray and black line, respectively. Included are the monthly Blue Chip

1-year headline CPI inflation forecast (solid blue line) and the 1-year zero-coupon inflation swap rate

downloaded from Bloomberg (solid red line). Panel (b) shows the year-over-year headline CPI inflation

realizations with a solid green line and compares it the 1-year inflation forecasts from the CV and SV

models shown with a solid gray and black line, respectively.
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5.2 Tails of the Inflation Distribution

In this section, we demonstrate that there are notable differences in the models’ assessment

of the uncertainty about the inflation outlook. To do so, we rely on the real-time model es-

timates and analyze the tails of the models’ conditional inflation distributions in greater

detail.

In Figure 3(a), we focus on the risk of low inflation defined as annual inflation averaging

less than 1% over the next 3 years. We note that the estimated probabilities from the CV

model exhibit a very erratic pattern; before late 2008 they suggested that the risk of low in-

flation was entirely negligible, but suddenly the estimated probability of this risk spiked to

equal one at the peak of the financial crisis, only to fall back to very low levels a few

months later. This behavior is the consequence of the model’s very narrow distribution for

the most likely inflation outcomes.

In Figure 3(b), we consider the risk of high inflation defined as annual inflation averag-

ing above 3% over the next 3 years, which historically has not been an unlikely event. Still,

according to the CV model, this was an almost impossible outcome, even in 2007 and early

2008 when energy and commodity prices were near all-time highs. Importantly, during that

period, it also put the risk of low inflation at near zero. This underscores the narrowness of

its inflation distribution at forecast horizons relevant for monetary policy analysis.

In contrast, the variation in the estimated probabilities of these two inflation outcomes

based on the SV model is more gradual. Particularly noteworthy is the fact that, once an in-

flation outcome has a high likelihood, its estimated probability varies only slowly consist-

ent with the high persistence of the underlying inflation process. Furthermore, at times,

both tail outcomes can have non-negligible probabilities simultaneously according to this

model.

To go beyond the descriptive analysis above and perform a more rigorous test of the

two models’ ability to capture tail inflation risks, we focus on the risk of deflation and its

implications for the value of the option protecting against deflation embedded in the TIPS

contract. The remainder of the paper is devoted to this task.

6. Deflation Risk

In this section, we first compare the models’ deflation probability forecasts before we pro-

ceed to assess their ability to value the deflation protection option embedded in TIPS.

6.1 Deflation Probability Forecasts

To begin, Figure 4 shows the models’ implied objective probability forecasts of net defla-

tion 1 year ahead. The risk of deflation in 2007 and leading up to the failure of Lehman

Brothers in September 2008 was basically zero under both models. In late 2008, the models

assigned a high probability to net deflation over the following 12-month period, which is

consistent with the observed negative year-over-year change in headline CPI observed dur-

ing these months. The SV model probabilities are markedly higher than the CV model prob-

abilities starting at the end of 2008 through year-end 2010. These higher and more

persistent probabilities are partly a reflection of slightly lower short-term expected inflation

within the SV model during this period (see Figure 2), but mainly they are due to the

SV model’s higher conditional volatility estimates that make tail outcomes more likely as

also emphasized in the previous section. Furthermore, in light of the fact that the economy

did experience negative headline CPI inflation during 2009, we consider the deflation
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probability forecasts from the CV model to be low, while the forecasts from the SV model

appear more reasonable with estimates in the 30–50% range through most of 2009.

6.2 Deflation Protection Option Values

In this section, we use our rolling estimation results to analyze the models’ ability to price

the deflation protection option embedded in TIPS using the methodology described in
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Figure 4. Estimated 1-year deflation probabilities.

Illustration of the estimated probability of negative net inflation over the following 1-year period under

the objective P probability measure according to the CV and SV models.
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Figure 3. Model-based probabilities of inflation outcomes.

Panel (a) shows the estimated probability of headline CPI inflation averaging below 1% over the next 3

years, a low inflation outcome, according to the CV and SV models. Panel (b) shows the estimated

probability of headline CPI inflation averaging above 3% over the next 3 years, a high inflation out-

come, according to the CV and SV models. The data series represent real-time weekly estimates under

the objective P probability measure covering the period from January 6, 2007, to December 31, 2010.
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Section 2.2. To highlight the difference between the CV and SV models in this regard,

Figure 5 shows the two model-implied values of the embedded TIPS deflation protection

option measured as the difference in value between a newly issued TIPS and an otherwise

identical seasoned TIPS converted into par-coupon yield spreads. The shown series are syn-

thetic, constant 5-year par-yield spreads implied by both models. The figure also shows the

actually observed yield differences between seasoned and recently issued TIPS with matur-

ities in 2013, 2014, and 2015. At each point in time, we only show the yield spread for the

TIPS pair containing the most recently issued 5-year TIPS, which we refer to as the on-the-

run pair, and that represents the closest observable proxy to the model-implied constant-

maturity yield spread.15

As observed by Christensen, Lopez, and Rudebusch (2012), the CV model consistently

undervalues the deflation protection option even though it follows its time-variation well.

The SV model is much more successful at matching the observed value of the deflation op-

tion prior to the crisis, at the peak of the crisis, as well as in the post-crisis period. Table VII

shows that the SV model provides better estimates of the embedded TIPS deflation option

over the sample period of April 2008 through December 2010, both in terms of mean fitted

error (i.e., �1.50 basis points for the SV model relative to þ10.49 basis points for the CV

model) and root-mean squared error (i.e., 19.28 versus 25.09 basis points). Looking more

carefully at subperiods, both models performed similarly prior to the Lehman bankruptcy

in September 2008, but for the remainder of 2008, the SV model’s RMSE was lower at

50.6 basis points when compared with the CV model’s value of 62.4 basis points. The SV

model again outperformed the CV model over the course of 2009 with an RMSE of 33.4

basis points relative to 40.5 basis points, and in 2010, the corresponding RMSE values

were similar at 8.4 versus 7.1 basis points. The ability of the SV model to handle the greater

volatility observed during the financial crisis, while performing as well as the CV model be-

fore and after the crisis period, is strong evidence in favor of using this model for term

structure modeling, especially for interest-rate derivatives pricing and capturing the data’s

second-moment dynamics.

To further illustrate the relative performance of the models, we examine the fitted values

of the model-implied equivalents of the yield-to-maturity for each of the TIPS in the on-the-

run pair separately.16 For this exercise, we match the timing of the outstanding coupons

and principal for each bond exactly, although we neglect the lag in the inflation indexation

since such adjustments are typically small for medium-term bonds. Specifically, we generate

the net present value of the remaining bond payments using Equation (14) and the fitted

real yield curve to convert the bond price into yield-to-maturity. In addition, we add the

model-implied value of the deflation protection option before converting the bond price

into yield-to-maturity. We explicitly control for the accrued inflation compensation in the

option valuation; that is, the option will only be in the money provided that

PT

Pt
� 1

Pt=P0
; (39)

15 Specifically, from April 23, 2008, to April 22, 2009, we use the 5-year TIPS with maturity in April 2013

and the 10-year TIPS with maturity in July 2013. From April 23, 2009, to April 23, 2010, we use the 5-year

TIPS with maturity in April 2014 and the 10-year TIPS with maturity in July 2014. Since April 26, 2010,

we use the 5-year TIPS with maturity in April 2015 and the 10-year TIPS with maturity in July 2015.

16 We are grateful to Kenneth Singleton for suggesting this exercise.
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where Pt=P0 is the index ratio as of time t; see Appendix B for further details. Thus,

for the option to be in the money, the deflation experienced over the remaining life of

the bond, PT=Pt, has to negate the accumulated inflation experienced since the bond’s

issuance.
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Figure 5. Proxy value of the five-year TIPS deflation protection option.

Illustration of the estimated 5-year par-coupon yield spread between a seasoned and a newly issued

TIPS according to the CV and SV models. Included is also the spread in yield-to-maturity between

comparable pairs of seasoned and newly issued TIPS with approximately 5 years remaining to matur-

ity as reported by Bloomberg. As per Wright (2009), this spread can be viewed as a proxy for the value

of the embedded TIPS deflation protection option. See footnote 15 for complete details on the specific

nominal and real bond pairs used to generate the series.

Table VII. Summary statistics of pricing errors for Bloomberg data

The table reports the mean and the root mean squared pricing error of the yield-

to-maturity for the seasoned and newly issued TIPS in the pair of TIPS that con-

tains the on-the-run 5-year TIPS as reported by Bloomberg. For comparison the

last row reports the comparable in-sample mean and RMSE of the 5-year TIPS

yield in the Gürkaynak, Sack, and Wright (2010) data based on the full sample esti-

mation of each model. All numbers are measured in basis points. The data are

weekly covering the period from April 25, 2008, to December 31, 2010, a total of

141 observations.

TIPS yield CV model SV model

Mean RMSE Mean RMSE

(a) Seasoned 1.88 38.68 15.76 39.41

(b) Newly issued �8.61 23.75 17.26 32.32

Yield spread (a–b) 10.49 25.09 �1.50 19.28

Five-year GSW yield 9.29 28.48 4.67 18.61
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As shown in Figure 6, both models fit the bond-specific yield data relatively well outside

of the peak of the financial crisis in the fall of 2008 and the early part of 2009 when TIPS li-

quidity was a concern. Table VII shows that the SV model does not perform as well in pric-

ing the individual bonds as it does in capturing the spread and thus the embedded option

values. For the sample period, the SV model has larger mean errors for both the seasoned

and newly issued TIPS. In terms of RMSE, its value for the seasoned bonds is on par with

that of the CV model, but it is much higher for the newly issued bonds. As observed in

Table V regarding the models’ comparative in-sample fit for the nominal and real yield

curves, the relative advantage of the SV model is not obvious when examining the data’s

first moment dynamics, whether for the real yield curve or for individual bond yields.

However, the model’s ability to price the option values implicit in the spread between the

on-the-run bond pairs reflects its advantage in better capturing the data’s second moment

dynamics. Thus, the introduction of SV into term structure models is an important exten-

sion for modeling interest rate risk and derivatives pricing.

7. Analysis of the Deflation Option Values

In this section, we use regression analysis to identify the determinants of the model-implied

deflation option values defined as the par-bond yield spread between a seasoned and a com-

parable newly issued TIPS as described in the previous section.17 We acknowledge that

TIPS market functioning, along with the functioning of so many other financial markets,

was impaired at the peak of the financial crisis, and our models do not readily account for

such liquidity effects. As a consequence, we attempt to assess how much of the variation in

the deflation option value during our sample period reflects outright deflation fears caused

by economic uncertainty and how much could be associated with market illiquidity and
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Figure 6. Comparison of model-implied TIPS yields to Bloomberg data.

Comparison of the model-implied yields based on GSW data to the yield-to-maturity of the seasoned

and newly issued TIPS as reported by Bloomberg.

17 This analysis and the choice of variables are heavily inspired by Christensen and Gillan (2015),

who assess the impact on frictions in the TIPS and inflation swap markets from the TIPS pur-

chases included in the Federal Reserve’s second program of large-scale asset purchases, fre-

quently referred to as QE2, that operated from November 2010 to June 2011.
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limits to arbitrage. Finally, we use the regression results to analyze the extent to which the

estimated illiquidity effects may affect the assessment of the deflation risk.

7.1 Econometric Challenge

The correlation between states of the world with near-zero interest rates and states of the

world with deflation is intuitively high, as per the Fisher equation that states that the nom-

inal interest rate equals the real interest rate plus the rate of inflation. Unfortunately, the

near-zero interest rates in the USA came about as a policy response to the freezing of finan-

cial markets. Correspondingly, in the data, poor market functioning coincides with low

interest rates. Worse still, in the post-crisis period when financial conditions started to nor-

malize, the reverse pattern was observed; that is, improvement in market functioning goes

hand in hand with reduced risk of deflation. Thus, in our regressions, the deflation option

value, which is our dependent variable, will tend to decline at the same time as measures of

market functioning improve without the two having a causal relationship. In short, our re-

sults could likely be interpreted as indicating that the yield wedge between seasoned and

newly issued TIPS was caused by limits to arbitrage, rather than reflecting true expectations

for deflation.

7.2 Dependent Variables

For our regression analysis, our dependent variable is the synthetic par-coupon bond yield

spread between a seasoned TIPS whose deflation protection option value can be assumed to

be zero and a newly issued TIPS where the option is at-the-money. To be consistent with

the previous analysis, we limit our focus to the 5-year deflation option value series. These

estimated series from the two models are shown in Figure 7 and represent the dependent

variables in our regressions.18

7.3 Explanatory Variables

In this section, we provide a brief description of the explanatory variables included in our

analysis. While the other factors to be considered are supposed to capture limits to arbi-

trage or pricing frictions, our first and leading candidate is a measure of priced economic

uncertainty, namely the VIX options-implied volatility index. It represents near-term uncer-

tainty about the general stock market as reflected in 1-month options on the Standard and

Poor’s 500 stock price index and is widely used as a gauge of investor fear and risk aver-

sion. When the price of uncertainty goes up as reflected in higher values of the VIX, the

value of the TIPS deflation protection option should go up as well.

The second variable is a market illiquidity measure introduced in a recent paper by

HPW.19 They demonstrate that deviations in bond prices in the Treasury securities market

from a fitted yield curve represent a measure of noise and illiquidity caused by limited avail-

ability of arbitrage capital. Their analysis suggests that the measure is a priced risk factor

across several financial markets, which they interpret to imply that their error series

18 We emphasize that the option values in Figure 7 are based on the model parameters estimated as

of the last day of the sample, unlike in prior sections in which we present results based on rolling

model re-estimations. This provides a longer sample for the regression analysis that is less domi-

nated by the financial crisis.

19 The data are publicly available at Jun Pan’s website: https://sites.google.com/site/junpan2/

publications.
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represents an economy-wide illiquidity measure that should affect all financial markets

including the market for TIPS.

The third variable considered is the yield difference between seasoned, or so-called off-

the-run, Treasury securities and the most recently issued, or so-called on-the-run, Treasury

security.20 For each maturity segment in the Treasury bond market, the on-the-run security

is typically the most traded security and therefore least penalized in terms of liquidity pre-

miums. For our analysis, the important thing to note is that, provided there is a wide yield

spread between liquid on-the-run and comparable seasoned Treasuries, we would expect a

similar widening of the yield spread between comparable seasoned and newly issued TIPS.

Our fourth explanatory variable is the excess yield of AAA-rated US industrial corporate

bonds over comparable Treasury yields, as per Christensen, Lopez, and Rudebusch

(2014b). We use the 2-year credit spread, which strikes a balance between matching the

maturity of the deflation options and focusing on a maturity at which the credit risk of

AAA-rated corporate bonds is negligible. This yield spread largely reflect the premium

bond investors required for being exposed to the lower trading volume and larger bid-ask
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Figure 7. Five-year deflation option values.

Illustration of the estimated 5-year deflation option values from the CV and SV models based on the

parameter values at the end of the sample period. The data cover the period from January 3, 2003, to

December 31, 2010.

20 We focus on the most widely used 10-year maturity and construct the spread by taking the differ-

ence between the off-the-run Treasury par-coupon bond yield from the GSW (2007) database and

the on-the-run Treasury par-coupon bond yield from the H.15 series at the Board of Governors.
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spreads in the corporate bond market vis-à-vis the liquid Treasury bond market. Again, if

such illiquidity premiums of high-quality corporate bonds are large, we could expect wider

yield spreads between comparable seasoned and newly issued TIPS.

The fifth and final variable included is the weekly average of the daily trading volume in

the secondary market for TIPS as reported by the Federal Reserve Bank of New York.21 We

use the 8-week moving average to smooth out short-term volatility. This measure should

have a negative effect on the value of the deflation option provided it reflects limits to arbi-

trage as increases in TIPS trading volume should, in most cases, reduce mispricing.

7.4 Regression Results

Table VIII reports the results of regressing the 5-year deflation option values from the CV

(top panel) and SV (bottom panel) models on the explanatory variables described in the

previous section.22

First, the regressions with the deflation option values derived from the SV model gener-

ally produce higher adjusted R2s. Second, these R2 easily exceeds 80%, suggesting that our

five explanatory variables are successful in capturing much of the variation in the deflation

option values. Third, and most importantly, the VIX is always a highly significant explana-

tory variable with an estimated coefficient of the right sign and of economically meaningful

size. Thus, one robust finding is that financial market uncertainty as measured by the VIX

is a key component of TIPS deflation option value. Furthermore, and not surprisingly, the

measure of financial market illiquidity introduced by HPW also consistently has a high ex-

planatory power with a positive sign for its estimated coefficient. This result suggests that

at least part of the variation in our deflation option values reflects financial market illiquid-

ity. In addition, the other three measures of market liquidity and market functioning indi-

vidually have the expected sign, but when combined with the VIX and the HPW measure,

their added explanatory power is low. Since we have not corrected the TIPS yields used in

model estimation for any liquidity effects, these results were to be expected. Still, we con-

sider the high significance of the VIX in these regressions a strong indication that the

model-implied deflation protection option values are real and not a spurious artifact caused

by changes in TIPS market liquidity.

7.5 Liquidity-Adjusted Deflation Probabilities

In this section, we use the above regression results to produce model-implied deflation

probabilities that are adjusted for the estimated TIPS liquidity effects.23 We proceed by sep-

arating the 5-year deflation option value from the SV model into an economic uncertainty

component and a liquidity component, based on regression (7) in the bottom panel of

Table VIII. The VIX multiplied by its estimated regression coefficient represents an estimate

of the uncertainty component, here referred to as the liquidity-adjusted deflation option

values and shown in Figure 8 with a comparison to the estimated 5-year deflation option

values. We note that TIPS illiquidity effects played a material role in the early part of the

21 The data are available at: http://www.newyorkfed.org/markets/statrel.html.

22 The results reported in Table VIII are robust to using other maturities and sample periods. We

also conducted this analysis using the observed difference between seasoned and recently

issued TIPS securities and achieved qualitatively similar results.

23 We thank an anonymous referee for suggesting this exercise. Please note that we limit our focus

to the SV model, but a similar approach can be applied to the CV model.
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sample and again around the peak of the financial crisis as discussed in CLR. Outside those

two relatively short periods, illiquidity effects appear to have mattered less for our analysis.

To generate liquidity-adjusted estimates of the risk of deflation, we assume that nominal

yields—as well as the nominal level factor and the common slope and curvature factors

ðLN
t ; St;CtÞ—are approximately free of liquidity effects in comparison to TIPS yields. This

assumption implies that (to a first order approximation) the real yield level factor LR
t is

Table VIII. Deflation option value regression results, 2003–2010

The top panel reports the results of regressions with the par-bond yield spread between a sea-

soned and a newly issued 5-year TIPS implied by the CV model, while the bottom panel reports

the regression results for the corresponding measure implied by the SV model. T-statistics are

reported in parentheses. Asterisks * and ** indicate significance at the 5% and 1% levels, re-

spectively. The data samples are weekly covering the period from January 3, 2003, to

December 31, 2010, a total of 418 observations. The model-implied deflation option values are

based on the estimated parameter values over the full data sample.

Explanatory variables (1) (2) (3) (4) (5) (6) (7)

CV model

Constant �0.12 �0.05** �0.08** �0.03** 0.13** �0.07** �0.04**

(�15.41) (�11.60) (�12.37) (�4.41) (6.17) (�10.18) (�2.72)

VIX 0.89** 0.20** 0.26**

(26.46) (3.86) (4.54)

HPW measure 0.03** 0.03** 0.04**

(35.75) (15.41) (12.71)

Off-the-run spread 0.87** �0.19**

(26.93) (�2.62)

AAA credit spread 0.21** �0.06**

(18.41) (�3.67)

TIPS trading volume �0.01** �0.00

(�3.12) (�1.37)

Adjusted R2 0.63 0.75 0.63 0.45 0.02 0.76 0.77

Explanatory variables (1) (2) (3) (4) (5) (6) (7)

SV model

Constant �0.17** �0.01 �0.09** 0.03� 0.39** �0.10** 0.00

(�13.37) (�1.91) (�9.01) (2.42) (10.95) (�8.24) (�0.04)

VIX 1.74** 0.77** 0.67**

(32.41) (8.75) (7.41)

HPW measure 0.06** 0.04** 0.04**

(36.11) (12.72) (10.17)

Off-the-run spread 1.72** 0.10

(34.60) (0.82)

AAA credit spread 0.36** �0.10**

(17.01) (�3.88)

TIPS trading volume �0.03** �0.01**

(�5.79) (�4.03)

Adjusted R2 0.72 0.76 0.74 0.41 0.07 0.79 0.83
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affected by TIPS illiquidity. As a consequence, we generate an alternative real yield level

factor by backing out the alternative path of LR
t that makes the model-implied 5-year defla-

tion option values match the liquidity-adjusted option values for each observation over the

period from January 3, 2003, to December 31, 2010, while keeping the other three state

variables at their estimated values. ~L
R

t is used to denote this alternative path for the real

yield level factor. Based on the estimated paths of the first three factors and ~L
R

t , Figure 9

shows the estimated 1-year deflation probabilities over the full sample period as well as the

corresponding estimates without any liquidity corrections.

We note that the largest liquidity adjustments are observed in 2003 and again around

the peak of the financial crisis in late 2008 and early 2009. More importantly, though, is

the observation that the TIPS illiquidity effects do not alter the inference regarding when

the risk of deflation is elevated; i.e., namely the 2003–04 deflation scare and the 2008–09

crisis period. However, the illiquidity effects do induce an upward bias in the assessment of

the severity of the deflation risk in these periods of relative market illiquidity. Further re-

search into this aspect of TIPS pricing and liquidity premiums is needed.

8. Conclusion

In this paper, we examine the deflation protection option embedded in TIPS over the

period from 2003 to 2010, including the depths of the financial crisis in late 2008 and

2003 2004 2005 2006 2007 2008 2009 2010 2011

0
50

10
0

15
0

20
0

S
pr

ea
d 

in
 b

as
is

 p
oi

nt
s Lehman Brothers

Bankruptcy
Sept. 15, 2008

Deflation option value, no adjustment   
Deflation option value, with liquidity adjustment  

Figure 8. The liquidity-adjusted 5-year deflation option values.

Illustration of the estimated 5-year deflation option values from the SV model with and without adjust-

ment for TIPS liquidity effects. The data series represent full sample weekly estimates covering the

period from January 3, 2003, to December 31, 2010.
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early 2009. To do so, we modify the joint model of nominal and real bond yields

introduced in CLR by replacing its CV assumption with SV driven by the model’s nominal

and real level factors. Our preferred specification of the SV model delivers reasonable de-

compositions of BEI (i.e., the spread between nominal and real Treasury yields) into ex-

pected inflation and inflation risk premiums, showing that this model captures the data’s

first moment dynamics as well as the CV model. However, the SV model is shown to be bet-

ter able to price the value of deflation protection embedded in TIPS and proxied for here by

the difference between similar TIPS with differing degrees of accumulated inflation protec-

tion. This result highlights that the SV model is better able to capture the volatility dy-

namics observed in the data and critical to derivatives pricing. Based on this evidence, the

proposed SV model should be useful for judging bond investors’ views on the tail risk of de-

flation as well as their inflation expectations. The SV model is an obvious candidate for

pricing derivative products in the inflation swap market, a topic we leave for future

research.

In analyzing our model-implied deflation option values, our regression results suggest

that general economic uncertainty—as measured by the VIX index—is a key driver, but

that measures of market illiquidity are also important. We attempted a simple adjustment

for such effects combining our model structure with regression results for the deflation op-

tion values. However, a more comprehensive correction of TIPS yields for liquidity effects
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Figure 9. The liquidity-adjusted 1-year deflation probabilities.

Illustration of the estimated 1-year deflation probabilities under the objective probability measure

from the SV model with and without adjustment for TIPS liquidity effects. The data series represent

full sample weekly estimates covering the period from January 3, 2003, to December 31, 2010.
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would be desirable (see Pflueger and Viceira, 2013; D’Amico, Kim, and Wei, 2014;

Abrahams et al., 2015 for examples), but this is another topic that we leave for future

research.

Finally, we end our sample in 2010 to avoid addressing the problem of the zero lower

bound of nominal yields. However, going forward, this will be a critical issue to address as

short-term US Treasury yields have been near the zero lower bound since mid-2011.

Christensen and Rudebusch (2015) introduce a tractable shadow-rate AFNS model class,

which respects the zero lower bound for nominal bond yields and could be explored fur-

ther. Again, we leave this important endeavor for future research.

Appendix A: Bond Price Formulas

In the SV model, nominal zero-coupon bond prices are given by

PNðt;TÞ ¼ E
Q
t ½expð�

Ð T
t rN

u duÞ� ¼ expðBN
1 ðt;TÞLN

t þ BN
2 ðt;TÞSt þ BN

3 ðt;TÞCt þ BN
4 ðt;TÞLR

t þ ANðt;TÞÞ;

where BN
1 ðt;TÞ; BN

2 ðt;TÞ; BN
3 ðt;TÞ, and BN

4 ðt;TÞ are the unique solutions to the following

system of ODEs

dBN
1 ðt;TÞ
dt

dBN
2 ðt;TÞ
dt

dBN
3 ðt;TÞ
dt

dBN
4 ðt;TÞ
dt

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

¼

1

1

0

0

0
BBBBBBBB@

1
CCCCCCCCA
þ

jQ
LN 0 0 0

0 k 0 0

0 �k k 0

0 0 0 jQ
LR

0
BBBBBBBB@

1
CCCCCCCCA

BN
1 ðt;TÞ

BN
2 ðt;TÞ

BN
3 ðt;TÞ

BN
4 ðt;TÞ

0
BBBBBBBB@

1
CCCCCCCCA

�1

2

X4

j¼1

r11 0 0 0

0 r22 0 0

0 0 r33 0

0 0 0 r44

0
BBBBBBBB@

1
CCCCCCCCA

ðBN
1 Þ

2 BN
1 BN

2 BN
1 BN

3 BN
1 BN

4

BN
1 BN

2 ðBN
2 Þ

2 BN
2 BN

3 BN
2 BN

4

BN
1 BN

3 BN
2 BN

3 ðBN
3 Þ

2 BN
3 BN

4

BN
1 BN

4 BN
2 BN

4 BN
3 BN

4 ðBN
4 Þ

2

0
BBBBBBBBB@

1
CCCCCCCCCA

r11 0 0 0

0 r22 0 0

0 0 r33 0

0 0 0 r44

0
BBBBBBBB@

1
CCCCCCCCA

2
6666666664

3
7777777775

j;j

ðdjÞ0;

and c and d are given by

c ¼

0

1

1

0

0
BBBBB@

1
CCCCCA and d ¼

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

0
BBBBB@

1
CCCCCA:
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This structure implies that the factor loadings in the nominal zero-coupon bond price

function are given by the unique solution to the following set of ODEs

dBN
1 ðt;TÞ
dt

¼ 1þ jQ
LN BN

1 ðt;TÞ �
1

2
r2

11BN
1 ðt;TÞ

2; BN
1 ðT;TÞ ¼ B

N

1 ;

dBN
2 ðt;TÞ
dt

¼ 1þ kBN
2 ðt;TÞ; BN

2 ðT;TÞ ¼ B
N

2 ;

dBN
3 ðt;TÞ
dt

¼ �kBN
2 ðt;TÞ þ kBN

3 ðt;TÞ; BN
3 ðT;TÞ ¼ B

N

3 ;

dBN
4 ðt;TÞ
dt

¼ jQ
LR BN

4 ðt;TÞ �
1

2
r2

44BN
4 ðt;TÞ

2; BN
4 ðT;TÞ ¼ B

N

4 :

These four ODEs have the following unique solution24:

BN
1 ðt;TÞ ¼

�2 e/NðT�tÞ � 1
h i

þ B
N

1 e/NðT�tÞð/N � jQ
LN Þ þ B

N

1 ð/
N þ jQ

LN Þ

2/N þ ð/N þ jQ
LN � B

N

1 r2
11Þ e/NðT�tÞ � 1
h i ;

BN
2 ðt;TÞ ¼ e�kðT�tÞB

N

2 �
1� e�kðT�tÞ

k
;

BN
3 ðt;TÞ ¼ kðT � tÞe�kðT�tÞB

N

2 þ B
N

3 e�kðT�tÞ þ ðT � tÞe�kðT�tÞ � 1� e�kðT�tÞ

k

� �
;

BN
4 ðt;TÞ ¼

2jQ
LR B

N

4

ð2jQ
LR � B

N

4 r2
44Þe

jQ

LR
ðT�tÞ þ B

N

4 r2
44

;

Where

/N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjQ

LN Þ2 þ 2r2
11

q
:

Now, the ANðt;TÞ-function in the yield-adjustment term in the nominal zero-coupon

bond yield function is given by the solution to the following ODE:

dANðt;TÞ
dt

¼ �BNðt;TÞ0KQhQ � 1

2
r2

2BN
2 ðt;TÞ

2 � 1

2
r2

3BN
3 ðt;TÞ

2; ANðT;TÞ ¼ A
N
:

This ODE has the following unique solution:

ANðt;TÞ¼A
Nþ

2jQ
LN hQ

LN

r2
11

ln
2/Ne

1

2
ð/NþjQ

LN ÞðT� tÞ

2/Nþð/NþjQ
LN �B

N

1 r2
11Þðe/NðT�tÞ �1Þ

2
664

3
775

þr2
22

1

2k2
ðT� tÞ�ð1þkB

N

2 Þ
k3

1� e�kðT�tÞ
h i

þð1þkB
N

2 Þ
2

4k3
1�e�2kðT�tÞ
h i" #

24 The calculations leading to this result are available upon request.
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þr2
33

1

2k2
ðT� tÞþ1þkB

N

2

k2
ðT� tÞe�kðT�tÞ � ð1þkB

N

2 Þ
2

4k
ðT� tÞ2e�2kðT�tÞ
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N

2 Þð3þkB
N
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3 Þ
4k2
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3 Þ
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3 Þ
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h i
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N
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N
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h i

2
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N

4 r2
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N

4 r2
44

2
4

3
5:

In the SV model, the real zero-coupon bond prices are given by

PR t;Tð Þ¼EQ
t exp �

ðT

t

rR
u du

� �� �
¼ exp BR

1 t;Tð ÞLN
t þBR

2 t;Tð ÞStþBR
3 t;Tð ÞCtþBR

4 t;Tð ÞLR
t þAR t;Tð Þ

� �
;

where BR
1 ðt;TÞ;BR

2 ðt;TÞ;BR
3 ðt;TÞ, and BR

4 ðt;TÞ are the unique solutions to the following sys-

tem of ODEs:

dBR
1 ðt;TÞ
dt

dBR
2 ðt;TÞ
dt

dBR
3 ðt;TÞ
dt

dBR
4 ðt;TÞ
dt

0
BBBBBBBBBBBB@
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3 BR

4 ðBR
4 Þ

2

0
BBBBBB@

1
CCCCCCA

r11 0 0 0

0 r22 0 0
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2
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3
7777775

j;j

ðdjÞ0:

This implies that the factor loadings in the real zero-coupon bond price function are given

by the unique solution to the following set of ODEs:

dBR
1 ðt;TÞ
dt

¼ jQ
LN BR

1 ðt;TÞ �
1

2
r2

11BR
1 ðt;TÞ

2; BR
1 ðT;TÞ ¼ B

R

1 ;

dBR
2 ðt;TÞ
dt

¼ aR þ kBR
2 ðt;TÞ; BR

2 ðT;TÞ ¼ B
R

2 ;

dBR
3 ðt;TÞ
dt

¼ �kBR
2 ðt;TÞ þ kBR

3 ðt;TÞ; BR
3 ðT;TÞ ¼ B

R

3 ;

dBR
4 ðt;TÞ
dt

¼ 1þ jQ
LR BR

4 ðt;TÞ �
1

2
r2

44BR
4 ðt;TÞ

2; BR
4 ðT;TÞ ¼ B

R

4 :
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These four ODEs have the following unique solution25:

BR
1 ðt;TÞ ¼

2jQ
LN B

R

1

ð2jQ
LN � B

R

1 r2
11Þe

jQ

LN
ðT�tÞ þ B

R

1 r2
11

;

BR
2 ðt;TÞ ¼ e�kðT�tÞB

R

2 � aR 1� e�kðT�tÞ

k
;
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3 ðt;TÞ ¼ kðT � tÞe�kðT�tÞB

R

2 þ B
R

3 e�kðT�tÞ þ aR ðT � tÞe�kðT�tÞ � 1� e�kðT�tÞ

k

� �
;
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4 ðt;TÞ ¼

�2 e/RðT�tÞ � 1
h i

þ B
R

4 e/RðT�tÞð/R � jQ
LRÞ þ B

R

4 ð/R þ jQ
LRÞ

2/R þ ð/R þ jQ
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R

4 r2
44Þ e/RðT�tÞ � 1
h i ;

Where

/R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjQ

LRÞ2 þ 2r2
44

q
:

The ARðt;TÞ-function in the yield-adjustment term in the real zero-coupon bond yield func-

tion is given by the solution to the following ODE:

dARðt;TÞ
dt

¼ �BRðt;TÞ0KQhQ � 1

2
r2

2BR
2 ðt;TÞ

2 � 1
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3BR
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R
;

which is
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25 The calculations leading to this result are available upon request.
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Appendix B: Calculation of the NPV of the TIPS Principal Deflation
Protection

In general, we are interested in finding the NPV of terminal payoffs from TIPS contingent

on the cumulated inflation being below some critical value q, specifically the following dif-

ference is of interest:

E
Q
t e�

Ð T
t rN

s ds1 PT
Pt
�1þq

� �� �
� E

Q
t e�

Ð T
t rR

s ds1 PT
Pt
�1þq

� �� �
:

Thus, the states of the world of interest are characterized by

PT

Pt
� 1þ q, Yt;T ¼

ðT

t

ðrN
s � rR

s Þds� lnð1þ qÞ:

Since we are pricing, we need the dynamics of the state variables under the Q-measure

dLN
t

dSt

dCt

dLR
t

dY0;t

0
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LR

0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
�

LN
t

St

Ct

LR
t

Y0;t

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

2
6666666666664

3
7777777777775

dt

þ

r11 0 0 0 0

0 r22 0 0 0

0 0 r33 0 0

0 0 0 r44 0

0 0 0 0 0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

ffiffiffiffiffiffiffi
LN

t

p
0 0 0 0

0
ffiffiffi
1
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ffiffiffi
1
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ffiffiffiffiffiffi
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ffiffiffi
1
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LN ;Q
t

dWS;Q
t

dWC;Q
t

dW
LR ;Q
t

dW
Y;Q
t

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
;

where Z0;t ¼ ðLN
t ; St;Ct;L

R
t ;Y0;tÞ represents the augmented state vector.

Now, define the following two intermediate functions:

w1ðB; t;TÞ ¼ EQ
t ½e�

Ð T
t rR

s dseB0Zt;T � and w2ðB; t;TÞ ¼ EQ
t ½e�

Ð T
t rN

s dseB0Zt;T �:

In order to calculate w1ðB; t;TÞ and w2ðB; t;TÞ, we summarize the Q-dynamics by the fol-

lowing matrices and vectors:

KQ ¼

jQ
LN 0 0 0 0

0 k �k 0 0

0 0 k 0 0

0 0 0 jQ
LR 0

�1 �ð1� aRÞ 0 1 0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
; hQ ¼

hQ
LN

0

0

hQ
LR

0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
; R¼

r11 0 0 0 0

0 r22 0 0 0

0 0 r33 0 0

0 0 0 r44 0

0 0 0 0 0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
;
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qN ¼

1

1

0

0

0

0
BBBBBBBB@

1
CCCCCCCCA
; qR ¼

0

aR

0

1

0

0
BBBBBBBB@

1
CCCCCCCCA
:

Furthermore, c and d are given by

c ¼

0

1

1

0

1

0
BBBBBB@

1
CCCCCCA

and d ¼

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0
BBBBBB@

1
CCCCCCA
:

From Duffie, Pan, and Singleton (2000) it follows that

w1ðB; t;TÞ ¼ expðBw1 ðt;TÞ0Zt;t þ Aw1 ðt;TÞÞ;

where Bw1 ðt;TÞ and Aw1 ðt;TÞ are the solutions to the following system of ODEs:

dBw1 ðt;TÞ
dt

¼ qRþðKQÞ0Bw1 ðt;TÞ�1

2

X5

j¼1

ðR0Bw1 ðt;TÞBw1 ðt;TÞ0RÞj;jðd
jÞ0; Bw1 ðT;TÞ ¼B; (B.1)

dAw1 ðt;TÞ
dt

¼ �Bw1 ðt;TÞ0KQhQ � 1

2

X5

j¼1

ðR0Bw1 ðt;TÞBw1 ðt;TÞ0RÞj;jcj; Aw1 ðT;TÞ ¼ 0: (B.2)

This system of ODEs can be solved analytically and the solution is provided in the follow-

ing proposition.

Proposition 1 Let the state variables be given by Zt;T ¼ ðLN
t ; St;Ct;L

R
t ;Yt;TÞ, and let the

real instantaneous risk-free rate be given by

rR
t ¼ ðqRÞ0Xt;

then
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t þB2
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h i

þB
1

/N
w1 �jQ

LN

	 

e
/N

w1 T�tð Þ þB
1

/N
w1 þjQ

LN

	 

2/N

w1 þ /N
w1 þjQ

LN �B
1
r2

11

	 

e
/N

w1 T�tð Þ �1
h i ;

B2
w1 t;Tð Þ¼ e�k T�tð ÞB

2� aR� 1�aR
� �

B
5

h i1� e�k T�tð Þ

k
;

B3
w1 t;Tð Þ¼ e�k T�tð ÞB

3þk T� tð Þe�k T�tð ÞB
2þ aR� 1�aR

� �
B

5
h i(

T� tð Þe�k T�tð Þ �1� e�k T�tð Þ

k

)

26 The calculations leading to this result are available upon request.
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B4
w1 t;Tð Þ¼

�2q4 e
/R

w1 T�tð Þ �1
h i

þB
4

/R
w1 �jQ

LR

	 

e
/R

w1 T�tð Þ þB
4

/R
w1 þjQ

LR

	 

2/R

w1 þ /R
w1 þjQ

LR �B
4
r2

44

	 

e
/R

w1 T�tð Þ �1
h i ;

B5
w1 t;Tð Þ¼B

5
;

and

Aw1 ðt;TÞ¼
2jQ

LN hQ
LN

r2
11

ln
2/N

w1 e

1

2
ð/N

w1 þjQ
LN ÞðT� tÞ

2/N
w1 þð/N

w1 þjQ
LN �B

1
r2

11Þ e
/N

w1 ðT�tÞ �1
h i

2
6664

3
7775

þr2
22 aR�ð1�aRÞB5þkB

2
h i2 1�e�2kðT�tÞ

4k3
þr2

2

2

aR�ð1�aRÞB5
h i2

k2
ðT� tÞ

�r2
22½aR�ð1�aRÞB5þkB

2� aR�ð1�aRÞB5
h i1�e�kðT�tÞ

k3

þr2
33 aR�ð1�aRÞB5þkB

3
h i2 1�e�2kðT�tÞ

4k3
þr2

33

2

aR�ð1�aRÞB5
h i2

k2
ðT� tÞ

þr2
33

2
aR�ð1�aRÞB5þkB

2
h i2

� 1

2k
ðT� tÞ2e�2kðT�tÞ � 1

2k2
ðT� tÞe�2kðT�tÞ þ1�e�2kðt�tÞ

4k3

� �

�r2
33 aR�ð1�aRÞB5þkB

3
h i

aR�ð1�aRÞB5
h i1�e�kðT�tÞ

k3

þr2
33

aR�ð1�aRÞB5þkB
3

h i
aR�ð1�aRÞB5þkB

2
h i
k

� 1

2k
ðT� tÞe�2kðT�tÞ þ1�e�2kðT�tÞ

4k2

� �

�r2
33

aR�ð1�aRÞB5
h i

aR�ð1�aRÞB5þkB
2

h i
k

�1

k
ðT� tÞe�kðT�tÞ þ1�e�kðT�tÞ

k2

� �

þ
2jQ

LR hQ
LR

r2
44

ln
2/R

w1 e

1

2
ð/R

w1 þjQ
LRÞðT� tÞ

2/R
w1 þð/R

w1 þjQ
LR �B

4
r2

44Þ e
/R

w1 ðT�tÞ �1
h i

2
6664

3
7775

with

/N
w1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjQ

LN Þ2 þ 2q1r
2
11

q
; q1 ¼ �B

5
; /R

w1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjQ

LRÞ2 þ 2q4r
2
44

q
; and q4 ¼ 1þ B

5
:

Using a similar approach, it holds that

w2ðB; t;TÞ ¼ expðBw2 ðt;TÞ0Zt;t þ Aw2 ðt;TÞÞ;

where Bw2 ðt;TÞ and Aw2 ðt;TÞ are the solutions to the following system of ODEs:

dBw2 ðt;TÞ
dt

¼ qN þ ðKQÞ0Bw2 ðt;TÞ � 1

2

X5

j¼1

ðR0Bw2 ðt;TÞBw2 ðt;TÞ0RÞj;jðd
jÞ0; Bw2 ðT;TÞ ¼ B;

dAw2 ðt;TÞ
dt

¼ �Bw2 ðt;TÞ0KQhQ � 1

2

X5

j¼1

ðR0Bw2ðt;TÞBw2 ðt;TÞ0RÞj;jcj; Aw2 ðT;TÞ ¼ 0:

This system can also be solved analytically and the solution is provided in the following

proposition.
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Proposition 2 Let the state variables be given by Zt;T ¼ ðLN
t ; St;Ct;L

R
t ;Yt;TÞ, and let the

nominal instantaneous risk-free rate be given by

rN
t ¼ ðqNÞ0Xt;

then

w2ðB; t;TÞ¼ expðB1
w2 ðt;TÞLN

t þB2
w2ðt;TÞStþB3

w2 ðt;TÞCtþB4
w2 ðt;TÞLR

t þB5
w2 ðt;TÞYt;tþAw2 ðt;TÞÞ;

where27

B1
w2 ðt;TÞ¼

�2q1½e
/N

w2 ðT�tÞ �1�þB
1ð/N

w2 �jQ
LN Þe

/N

w2 ðT�tÞ þB
1ð/N

w1 þjQ
LN Þ

2/N
w2 þð/N

w2 þjQ
LN �B

1
r2

11Þ½e
/N

w2 ðT�tÞ �1�
;

B2
w2 ðt;TÞ¼ e�kðT�tÞB

2�½1�ð1�aRÞB5�1�e�kðT�tÞ

k
;

B3
w2 ðt;TÞ¼ e�kðT�tÞB

3þkðT� tÞe�kðT�tÞB
2þ½1�ð1�aRÞB5�

(
ðT� tÞe�kðT�tÞ �1� e�kðT�tÞ

k

)

B4
w2 ðt;TÞ ¼

�2q4½e
/R

w2 ðT�tÞ � 1� þ B
4ð/R

w2 � jQ
LR Þe

/R

w2 ðT�tÞ þ B
4ð/R

w2 þ jQ
LRÞ

2/R
w2 þ ð/R

w2 þ jQ
LR � B

4
r2

44Þ½e
/R

w2 ðT�tÞ � 1�
;

B5
w2 ðt;TÞ ¼ B

5
;

and

Aw2 ðt;TÞ ¼
2jQ

LN hQ
LN

r2
11

ln
2/N

w2 e

1

2
ð/N

w2 þ jQ
LN ÞðT � tÞ

2/N
w2 þ ð/N

w2 þ jQ
LN � B

1
r2

11Þ e
/N

w2 ðT�tÞ � 1
h i

2
6664

3
7775

þr2
22 1� ð1� aRÞB5 þ kB

2
h i2 1� e�2kðT�tÞ

4k3
þ r2

22

2

1� ð1� aRÞB5
h i2

k2
ðT � tÞ

�r2
22 1� ð1� aRÞB5 þ kB

2
h i

1� ð1� aRÞB5
h i1� e�kðT�tÞ

k3

þr2
33 1� ð1� aRÞB5 þ kB

3
h i2 1� e�2kðT�tÞ

4k3
þ r2

33

2

1� ð1� aRÞB5
h i2

k2
ðT � tÞ

þr2
33

2
1� ð1� aRÞB5 þ kB

2
h i2

� 1

2k
ðT � tÞ2e�2kðT�tÞ � 1

2k2
ðT � tÞe�2kðT�tÞ þ 1� e�2kðt�tÞ

4k3

� �

�r2
33 1� ð1� aRÞB5 þ kB

3
h i

1� ð1� aRÞB5
h i1� e�kðT�tÞ

k3

þr2
33

1� ð1� aRÞB5 þ kB
3

h i
1� ð1� aRÞB5 þ kB

2
h i
k

� 1

2k
ðT � tÞe�2kðT�tÞ þ 1� e�2kðT�tÞ

4k2

� �

�r2
33

1� ð1� aRÞB5
h i

1� ð1� aRÞB5 þ kB
2

h i
k

� 1

k
ðT � tÞe�kðT�tÞ þ 1� e�kðT�tÞ

k2

� �

þ
2jQ

LR hQ
LR

r2
44

ln
2/R

w2 e

1

2
ð/R

w2 þ jQ
LR ÞðT � tÞ

2/R
w2 þ ð/R

w2 þ jQ
LR � B

4
r2

44Þ e
/R

w2 ðT�tÞ � 1
h i

2
6664

3
7775

27 The calculations leading to this result are available upon request.
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with

/N
w2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjQ

LN Þ2 þ 2q1r
2
11

q
; q1 ¼ 1� B

5
; /R

w2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjQ

LRÞ2 þ 2q4r
2
44

q
; and q4 ¼ B

5
:

With these results at our disposal, we can turn our attention to the pricing of the defla-

tion protection option in the TIPS contract. From Duffie, Pan, and Singleton (2000) it fol-

lows that

EQ
t e�

Ð T
t rR

s dseB0Zt;T 1fb0Zt;T � zg

� �
¼ w1ðB; t;TÞ

2
� 1

p

ð1
0

Imfe�ivzw1ðBþ ivb; t;TÞg
v

dv;

E
Q
t e�

Ð T
t rN

s dseB0Zt;T 1fb0Zt;T � zg

� �
¼ w2ðB; t;TÞ

2
� 1

p

ð1
0

Imfe�ivzw2ðBþ ivb; t;TÞg
v

dv:

Since we interested in the condition

Yt;T ¼
ðT

t

ðrN
s � rR

s Þds� lnð1þ qÞ;

the expectations above should be evaluated at b ¼ ð0; 0;0; 0; 1Þ; z ¼ lnð1þ qÞ, and

B ¼ ð0; 0; 0;0; 0Þ.

A similar approach can be used to calculate the NPV of the TIPS deflation protection

option within the CV model (see Christensen, Lopez, and Rudebusch (2012) for details).

The functions Imfe�ivzw1ðBþivb;t;TÞg
v and Imfe�ivzw2ðBþivb;t;TÞg

v that need to be integrated in

order to calculate the NPV of the TIPS deflation protection option have already converged

to zero for values of v above 500, so we approximate the infinite integral in the pricing for-

mulas by capping v at 1,000 to err on the side of conservatism and use a step size of

Dv ¼ 0:01 in the numerical approximation, which is sufficient since the functions are

clearly smooth.

Appendix C: Deflation Probabilities within the SV Model

Christensen, Lopez, and Rudebusch (2012) use the CV model to generate deflation proba-

bilities at various horizons appropriate for macroeconomic and monetary policy purposes.

Similarly, the SV model can be used to calculate deflation probabilities, although additional

steps are necessary. The change in the market-implied price index for the period from t until

t þ s is given by

Ptþs

Pt
¼ e

Ð tþs
t ðrN

s � rR
s Þds:

We want to calculate the probability of the event that the change in the price index is below

a certain critical level q. By implication, we are interested in the states of the world where

Ptþs

Pt
� 1þ q;

or, equivalently, ðtþs

t

ðrN
s � rR

s Þds� lnð1þ qÞ:
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Since the nominal and real instantaneous short rates are given by

rN
t ¼ LN

t þ St;

rR
t ¼ LR

t þ aRSt;

we are interested in the distributional properties of the following process:

Y0;t ¼
ðt

0

ðrN
s � rR

s Þds¼
ðt

0

ðLN
s þSs�LR

s �aRSsÞds ) dY0;t ¼ðLN
t þð1�aRÞSt�LR

t Þdt:

In general, the P-dynamics of the state variables Xt are given by

dXt ¼ KPðhP �XtÞdt þ RDðXtÞdWP
t :

Adding the Yt-process to this system, leaves us with a five-factor SDE of the following

form:

dLN
t

dSt

dCt

dLR
t

dY0;t

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
¼

jP
11 0 0 jP

14 0

jP
21 jP

22 jP
23 jP

24 0

jP
31 jP

32 jP
33 jP

34 0

jP
41 0 0 jP

44 0

0 0 0 0 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

hP
1

hP
2

hP
3

hP
4

0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

dt�

jP
11 0 0 jP

14 0

jP
21 jP

22 jP
23 jP

24 0

jP
31 jP

32 jP
33 jP

34 0

jP
41 0 0 jP

44 0

�1 �ð1�aRÞ 0 1 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

LN
t

St

Ct

LR
t

Y0;t

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

dt

þ

r11 0 0 0 0

0 r22 0 0 0

0 0 r33 0 0

0 0 0 r44 0

0 0 0 0 0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

ffiffiffiffiffiffiffi
LN

t

p
0 0 0 0

0
ffiffiffi
1
p

0 0 0

0 0
ffiffiffi
1
p

0 0

0 0 0
ffiffiffiffiffiffi
LR

t

p
0

0 0 0 0 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

dWLN ;P
t

dWS;P
t

dWC;P
t

dWLR;P
t

dWY;P
t

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
;

where Z0;t ¼ðLN
t ;St;Ct;L

R
t ;Y0;tÞ represents the augmented state vector.

This is a system of non-Gaussian state variables. As a consequence, we cannot use the

approach detailed in Christensen, Lopez, and Rudebusch (2012). Instead, we use the

Fourier transform analysis described in full generality for affine models in Duffie, Pan, and

Singleton (2000). They provide a formula for calculating contingent expectations of the

form

G
B;b

y; Zt;t; t;T
� �

¼ EP e
�
Ð T
t q0wZs;T ds

eB0Zt;T 1fbZt;T � ygjF t

� �
:

If we define

w B; Zt;t; t;T
� �

¼ EP e
�
Ð T
t q0wZs;T ds

eB0Zt;T

� �
¼ eBw t;Tð Þ0Zt;tþAw t;Tð Þ;
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where Bwðt;TÞ and Awðt;TÞ are solutions to a system of ODEs similar to the one outlined

in Equations (B.1) and (B.2),28 then Duffie, Pan, and Singleton (2000) show that

G
B;b
ðy; Zt;t; t;TÞ ¼

wðB; Zt;t; t;TÞ
2

� 1

p

ð1
0

Im½e�ivywðBþ ivb; Zt;t; t;TÞ�
v

dv:

Here, we are interested in the cumulative probability function of Yt;T conditional on Zt;t,

that is, we are interested in the function EP½1fYt;T � ygjF t�. From the result above it follows

that we get the desired probability function if we fix

B ¼ 0; b ¼

0

0

0

0

1

0
BBBBBBBB@

1
CCCCCCCCA
; qw ¼ 0; and y ¼ lnð1þ qÞ:

Priced Deflation Probabilities within the SV Model

The actual probability of deflation calculated above is determined by the estimated factor

dynamics under the P-measure. Thus, it reflects the actual time series dynamics of the state

variables. The priced probability of deflation, on the other hand, reflects the implicit prob-

ability of deflation needed to match the observed bond prices. Due to risk premia that re-

flect bond investor risk aversion, this measure can be different from the actual deflation

probability. To calculate the priced probability of deflation, we replace the P-dynamics

above with the Q-dynamics.

Appendix D: Alternative SV Specifications

In this appendix, we consider alternative ways of introducing SV into the CV model.

Specifically, we consider the seven admissible combinations of allowing for spanned SV

generated by one or two factors in the model following the work of Christensen, Lopez,

and Rudebusch (2014a).

We refer to these models as CLR models because they share the key properties of the CV

model as introduced in CLR. First, there are four state variables, which represent a level

factor unique to nominal and real yields, respectively, in addition to a slope and curvature

factor common to both yield curves. Second, these four state variables have joint dynamics

under the risk-neutral probability measure used for pricing closely matching the AFNS

model introduced in CDR. Third, the nominal and real short rates are defined as in CLR.

To keep the notation simple, we use CLR(i) to denote a model as defined above with i refer-

ring to the number of factors generating SV, while letters—LN, S, C, and LR—are used to

indicate the source(s) of SV in the model.

28 Note, however, that the solutions differ from the formulas in Appendix B as we are now working

under the P-measure. Thus, we rely on numerical approximations based on a fourth order Runge–

Kutta method.
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Table A1. Summary statistics of the fitted errors

The mean and RMSEs for the preferred specification of each model class are shown. All num-

bers are measured in basis points. The nominal yields cover the period from January 6, 1995,

to December 31, 2010, while the real TIPS yields cover the period from January 3, 2003, to

December 31, 2010.

Maturity in months CLR(0) CLR(1)-LN CLR(1)-C CLR(1)-LR

Nominal yields Mean RMSE Mean RMSE Mean RMSE Mean RMSE

3 �0.54 9.53 �0.34 19.21 �0.55 9.54 �2.99 20.28

6 0.00 0.00 �0.77 8.26 0.00 0.00 �2.26 9.07

12 1.79 5.80 0.00 0.00 1.80 5.81 0.00 0.00

24 2.22 3.98 0.69 1.63 2.22 3.99 1.44 2.33

36 0.00 0.13 �0.01 0.08 0.00 0.09 0.00 0.00

60 �2.67 3.73 �0.59 1.48 �2.67 3.74 �2.10 3.09

84 0.08 3.37 0.31 0.98 0.10 3.40 0.36 2.99

120 9.53 12.03 �0.07 4.20 9.57 12.08 8.87 11.46

TIPS yields Mean RMSE Mean RMSE Mean RMSE Mean RMSE

60 �3.98 20.27 �10.70 19.34 �3.49 20.07 �1.14 18.81

72 �2.60 12.23 �5.16 8.88 �2.27 12.09 �0.02 11.00

84 �1.31 5.64 0.00 0.00 �1.14 5.57 0.31 4.96

96 0.00 0.00 4.84 7.73 0.00 0.00 0.00 0.00

108 1.35 4.94 9.38 14.55 1.20 4.87 �0.83 4.26

120 2.74 9.32 13.63 20.64 2.46 9.18 �2.08 8.05

Max logL 52,558.84 53,329.49 52,584.17 52,825.60

Maturity in months CLR(2)-LNC CLR(2)-LNLR CLR(2)-SC CLR(2)-CLR

Nominal yields Mean RMSE Mean RMSE Mean RMSE Mean RMSE

3 0.44 9.15 0.75 19.23 �0.56 9.54 �0.52 9.53

6 0.00 0.00 �0.17 8.23 0.00 0.00 0.00 0.00

12 0.64 5.06 0.00 0.00 1.81 5.82 1.76 5.79

24 0.98 2.95 0.46 1.56 2.24 4.01 2.18 3.95

36 0.01 0.34 0.00 0.00 0.00 0.08 0.00 0.00

60 �0.75 1.80 �0.28 1.27 �2.69 3.78 �2.53 3.57

84 0.24 1.02 0.24 0.59 0.09 3.43 0.39 3.30

120 0.10 4.26 �1.15 4.41 9.60 12.05 10.04 12.52

TIPS yields Mean RMSE Mean RMSE Mean RMSE Mean RMSE

60 �12.90 25.74 �2.04 13.59 �3.39 20.03 �0.66 18.69

72 �8.40 15.76 �0.51 5.87 �2.21 12.06 0.25 10.93

84 �4.11 7.33 0.00 0.00 �1.12 5.55 0.43 4.93

96 0.00 0.00 �0.38 4.72 0.00 0.00 0.00 0.00

108 3.91 6.46 �1.52 8.74 1.18 4.85 �0.92 4.24

120 7.61 12.22 �3.32 12.35 2.42 9.16 �2.26 8.02

Max logL 53,520.53 54,470.80 52,563.86 52,851.89
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For each model class we go through a careful model selection process similar to the

one described in Section 4 to find a preferred specification.29 We then evaluate the models

based on their fit to the data, their model-implied inflation expectations, and their value of

the deflation option as defined in the paper. The purpose is to demonstrate that the SV
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Figure A2. Estimated 1-year objective deflation probabilities.

Illustration of the estimated probabilities of deflation over the following year under the objective P

probability measure according to the eight CLR(i) models described in the text.
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Figure A1. Estimated 5-year inflation expectations.

Illustration of the estimated inflation expectations at the 5-year horizon under the objective P probabil-

ity measure according to the eight CLR(i) models described in the text.

29 These results are available from the authors upon request.
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model—the CLR(2)-LNLR model in the notation in this Appendix—is competitive relative

to both the CV model and alternative CLR(i) models with spanned SV.

The summary statistics of the model fit are reported in Table A1. We note that, when we

make the incremental refinement of moving from the Gaussian CLR(0) model (i.e., the CV
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Figure A4. Five-year deflation option values.

Illustration of the estimated 5-year deflation option values from the eight CLR(i) models described in

the text. The data series represent real-time weekly estimates covering the period from January 6,

2007, to December 31, 2010.
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Figure A3. Estimated 1-year risk-neutral deflation probabilities.

Illustration of the estimated probabilities of deflation over the following year under the risk-neutral Q

probability measure according to the eight CLR(i) models described in the text.
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model) to models with a single factor generating the SV, the largest improvement in the log

likelihood value is obtained when the nominal level factor is allowed to be the source of the

SV. On the other hand, letting the curvature factor generate SV delivers only modest im-

provements. Importantly, this pattern is preserved when we move from one to two SV fac-

tors. As a consequence, the model with the nominal and real level factors as the sources of

the SV produces the highest log likelihood value among all eight model classes considered.

Figure A1 shows the estimated 5-year expected inflation series from all eight models. We

note that they produce rather similar dynamics for the first moment of the inflation distribu-

tion. Thus, there is little loss from limiting the focus to Gaussian models provided the main

objective is to generate projections of the expected path for inflation consistent with the in-

formation reflected in the markets for Treasuries and TIPS. Based on the similarity in the es-

timates across models we also conclude that the CV and SV models are representative of

the results across the eight different model classes in this regard.

Once we focus on tail events such as the risk of net deflation over the coming year, this

changes, however, and we see much greater dispersion across models. This is illustrated in

Figure A2, which shows the probabilities of net deflation over the next year estimated under

the objective probability measure. We note that several of the models are little different

from the Gaussian CLR(0) (CV) model. Again, the model with the nominal and real level

factors as the sources of the SV stands out as it is clearly one of the models that generate the

most variation in the estimated deflation probabilities.30 Furthermore, it is clear that the

conclusion that deflation risk was negligible in the years before the financial crisis is very ro-

bust and not sensitive to the specification of SV.

Figure A3 shows the estimated 1-year probabilities of net deflation under the risk-neutral

probability measure. Here, we note that the dispersion is smaller under the risk-neutral

probability measure than under the objective probability measure. The intuition behind this

result is that all the models are estimated to match the observed yields. Thus, for pricing

purposes, there is a limit to how different the models can be, which is not the case when it

comes to the time-series properties under the objective probability measure.

Finally, Figure A4 shows the estimates of the 5-year deflation option value defined as the

par-bond yield spread between a seasoned and a comparable newly issued 5-year TIPS

where the deflation protection option value can be assumed to be zero for former and at-

the-money for the latter. We note that the range of estimated 5-year deflation option values

from the eight models are bounded from below by the estimate from the CV model and

from above by the estimate from the SV model. Thus, our choice to focus on the CLR(2)-

LNLR (SV) model creates the greatest contrast in this analysis.
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