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ABSTRACT
Standard Gaussian affine dynamic term structure models do not rule
out negative nominal interest rates—a conspicuous defect with yields
near zero in many countries. Alternative shadow-rate models, which
respect the nonlinearity at the zero lower bound, have been rarely
used because of the extreme computational burden of their estimation.
However, by valuing the call option on negative shadow yields, we
provide estimates of a three-factor shadow-rate model of Japanese
yields. We validate our option-based results by closely matching them
using a simulation-based approach. We also show that the shadow
short rate is sensitive to model fit and specification. ( JEL: G12, E43,
E52, E58)

KEYWORDS: affine dynamic term structure models, zero lower bound,
monetary policy

Nominal yields on government debt in several countries have fallen very near
their zero lower bound (ZLB). Notably, yields on Japanese government bonds of
various maturities have been near zero since 1996. Similarly, many U.S. Treasury
rates edged down quite close to zero in the years following the financial crisis in
late 2008. Accordingly, understanding how to model the term structure of interest
rates when some of those interest rates are near the ZLB commands attention for
bond portfolio pricing, risk management, for macroeconomic and monetary policy
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analysis. Unfortunately, the workhorse representation in finance for bond pricing—
the affine Gaussian dynamic term structure model—ignores the ZLB and routinely
places positive probabilities on future negative interest rates. This counterfactual
flaw stems from ignoring the existence of currency, which is a readily available store
of value. In the real world, an investor always has the option of holding cash, and
the zero nominal yield of cash will dominate any security with a negative yield.1

To recognize the option value of currency in bond pricing, Black’s (1995)
introduced the notion of a “shadow short rate,” which is driven by fundamentals
and can be positive or negative. The observed short rate equals the shadow short
rate except that the former is bounded below by zero. While Black’s (1995) use of a
shadow short rate to account for the presence of currency holds much intuitive
appeal, it has rarely been used. In part, this infrequency reflects the fact that
interest rates in many countries have long been some distance above zero, so
the Gaussian models’ positive probabilities on negative future interest rates are
negligible and unlikely to be an important determinant in bond pricing. In recent
years, with yields around the world at historic lows, this rationale no longer applies.
However, a second factor limiting the adoption of the shadow-rate structure has
been the difficulty in estimating these nonlinear models. Gorovoi and Linetsky
(2004) derive quasi-analytical bond price formulas for the case of one-factor
Gaussian and square-root shadow-rate models.2 Unfortunately, their results do
not extend to multidimensional models. Instead, the small set of previous research
on shadow-rate models has relied on numerical methods for pricing.3 However,
in light of the computational burden of these methods, previous estimations of
shadow-rate models have focused on models that use only one or two factors.
For example, Ichiue and Ueno (2007) and Kim and Singleton (2012) undertake a
full maximum-likelihood estimation of a two-factor Gaussian shadow-rate model
on Japanese bond yield data using the extended Kalman filter and numerical
optimization. These analyses were limited to only two pricing factors because
the numerical methods required for shadow-rate models with more than two
factors were computationally too onerous. This practical shortcoming is potentially
quite serious given the prevalence of higher-dimensional bond pricing models in
research and industry.4 Indeed, to overcome the practical difficulties of empirical
implementation, Ichiue and Ueno (2013) simplify the structure by ignoring bond

1Actually, the ZLB can be a somewhat soft floor. The nonnegligible costs of transacting in and holding
large amounts of currency have allowed yields to push slightly below zero in a few countries, notably
in Denmark recently. To account for institutional currency frictions in our analysis, we could replace the
zero lower bound on yields with some appropriate, possibly time-varying, negative epsilon as detailed
in Section 2.4.

2Ueno et al. (2006) use these formulas when calibrating a one-factor Gaussian model to a sample of
Japanese government bond yields.

3Kim and Singleton (2012) and Bomfim (2003) use finite-difference methods to calculate bond prices, while
Ichiue and Ueno (2007) employ interest rate lattices.

4Indeed, Kim and Singleton (2012) suggest that the shadow-rate model results of Ueno et al. (2006) are
influenced by their use of a one-factor shadow-rate model that may not be flexible enough to fit their
sample of Japanese data. Similarly, the Kim and Singleton (2012) two-factor results may not generalize to
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convexity effects, so the magnitude of the resulting deviations from arbitrage-free
pricing is unclear.

An alternative option-based approach to reduce the computational burden
associated with the ZLB, suggested by Krippner (2012), appears to allow for
tractable estimation of dynamic term structure shadow-rate models with more
than two factors. The intuition for the option-based approach is that the price of a
standard observed bond (which is constrained by the ZLB) should equal the price
of a shadow-rate bond (which is not constrained by the ZLB) minus the price of a
call option pertaining to the possibility that the unconstrained shadow rates may go
negative. That is, the owner of a shadow bond would have to sell off the probability
mass associated with the shadow (zero-coupon) bond trading above par in order to
match the value of the observed bond. Unfortunately, this call option is difficult to
value, so Krippner (2012) provides only an approximate solution to the correct one.
Krippner suggests that the approximation error is likely small, but little is known
in practice about its size and properties.

In this article, we implement this new option-based approach to estimate
the first three-factor shadow-rate model on Japanese yield data.5 Specifi-
cally, we use the option-based method to estimate a shadow-rate version
of the Gaussian arbitrage-free Nelson-Siegel (AFNS) model introduced in
Christensen, Diebold, and Rudebusch (2011), henceforth CDR. The AFNS model
class provides a flexible and robust structure for dynamic term structure modeling
that has performed well on a variety of yield samples by combining good fit
with tractable estimation. Furthermore, as we show in this article, with an option-
based estimation approach, the AFNS specification of the pricing factor dynamics
leads to analytical formulas for the instantaneous shadow forward rates. These
new closed-form expressions facilitate straightforward empirical implementation
of higher-order shadow-rate models. We demonstrate this with an estimation of
shadow-rate AFNS models using Japanese term structure data, which are of special
interest because they include a long period of near-zero yields. In particular, we
estimate one-, two-, and three-factor versions of the shadow-rate AFNS model and
compare these to one-, two-, and three-factor versions of the standard Gaussian
AFNS model. We find that shadow-rate models can provide better fit as measured
by in-sample metrics such as the RMSEs of fitted yields and the likelihood values.
Still, it is evident from these in-sample results that a standard three-factor Gaussian
dynamic term structure model—like our Gaussian three-factor AFNS model—has
enough flexibility to fit the cross-section of yields fairly well at each point in time
even when the shorter end of the yield curve is flattened out at the ZLB. However,

higher-order models. Finally, note that Bauer and Rudebusch (2013) argue that additional macroeconomic
factors will be especially useful at the ZLB to augment the standard yields-only model.

5Wu and Xia (2013) derive a discrete-time version of the Krippner framework and implement a three-
factor specification using U.S. Treasury data. In related research, Priebsch (2013) derives a second-order
approximation to the Black (1995) shadow-rate model and estimates a three-factor version thereof, but it
requires the calculation of a double integral in contrast to the single integral needed to fit the yield curve
in the Krippner framework.
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it is not the case that the Gaussian model can account for all aspects of the term
structure at the ZLB. Indeed, we show that our estimated three-factor Gaussian
model clearly fails along two dimensions. First, despite fitting the yield curve, the
model cannot capture the dynamics of yields at the ZLB. One stark indication
of this is the high probability the model assigns to negative future short rates—
obviously a poor prediction. Second, the standard model misses the compression
of yield volatility that occurs at the ZLB as expected future short rates are pinned
near zero, longer-term rates fluctuate less. The shadow-rate model, even without
incorporating stochastic volatility, can capture this effect.

We then examine three features of the shadow-rate model in detail. As
noted above, the option-based approach provides only an approximation to a
fully consistent arbitrage-free dynamic term structure model. For our three-
factor shadow-rate AFNS model, we compare the option-based approximation to
simulation-based results and find that they are very close. Indeed, the option-
based approximation errors are typically an order of magnitude smaller than
the in-sample fitted errors, so the potential loss from using an option-based
approach in a realistic setting like ours appears to be minimal. Second, we assess
the efficiency of the extended Kalman filter we use in estimating shadow-rate
models by comparing the results to those obtained with the unscented Kalman
filter. The results indicate that extended versus unscented filtering makes very
little difference, even for our sample of near-zero Japanese yields, which is very
promising as the extended Kalman filter is less computationally intensive. Third,
we examine the robustness to model specification of the shadow short rate, which
has been recommended by some to be a useful measure of the stance of monetary
policy at the ZLB (e.g., Krippner 2012, 2013b; Bullard, 2012). We find that there is
notable disagreement about the value of the shadow short rate across models with
different numbers of factors. This sensitivity to model specification suggests that
conclusions based on the shadow short rate near the zero boundary are likely to be
fragile.

Finally, we should mention two alternative frameworks to modeling yields
near the ZLB that guarantee positive interest rates: stochastic-volatility models with
square-root processes and Gaussian quadratic models. Both of these approaches
suffer from the theoretical weakness that they treat the ZLB as a reflecting barrier
and not as an absorbing one as in the shadow-rate model. Empirically, of course, the
recent prolonged periods of very low interest rates seem more consistent with an
absorbing state. In addition, Dai and Singleton (2002) disparage the fit of stochastic-
volatility models, while Kim and Singleton (2012) compare quadratic and shadow-
rate empirical representations and find a slight preference for the latter. Still, we
consider all three modeling approaches to be worthy of further investigation, but
we view the shadow-rate model to be of particular interest because away from
the ZLB it reduces exactly to the standard Gaussian affine model, which is by far
the most popular dynamic term structure model. Therefore, the entire voluminous
literature on affine models remains completely applicable and relevant when given
a modest shadow-rate tweak to handle the ZLB.
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The rest of the article is structured as follows. Section 2 introduces the shadow-
rate framework and the option-based approach. Section 3 details our shadow-rate
AFNS model. Section 4 describes our Japanese yield data. Section 5 presents our
empirical findings for one-, two-, and three-factor shadow-rate models. Finally,
Section 6 concludes. Two appendices provide technical details on model estimation
and detailed model estimation results.

1 SHADOW-RATE MODELS

In this section, we introduce two types of shadow-rate term structure models. The
first is the original approach offered by Black (1995). The second is the option-based
approach introduced in Krippner (2012).

1.1 The Black Shadow-Rate Model

The concept of a shadow interest rate as a modeling tool to account for the ZLB can
be attributed to Black (1995). He noted that the observed nominal short rate will be
nonnegative because currency is a readily available asset to investors that carries a
nominal interest rate of zero. Therefore, the existence of currency sets a zero lower
bound on yields.

To account for this ZLB, Black postulated as a modeling tool a shadow short
rate, st, that is unconstrained by the ZLB. The usual observed instantaneous risk-
free rate, rt, which is used for discounting cash flows when valuing securities, is
then given by the greater of the shadow rate or zero:

rt =max{0,st}. (1)

Accordingly, as st falls below zero, the observed rt simply remains at the zero bound.
While Black (1995) described circumstances under which the zero bound on

nominal yields might be relevant, he did not provide specifics for implementation.
Gorovoi and Linetsky (2004) derive one-factor shadow-rate model bond price for-
mulas, which Ueno et al. (2006) use to calibrate a one-factor Gaussian shadow-rate
model to Japanese yield data, but these formulas do not generalize to multifactor
models. Instead, previous researchers have employed numerical methods for
pricing. Bomfim (2003) use finite-difference methods to calculate bond prices, while
Ichiue and Ueno (2007) employ interest rate lattices. Kim and Singleton (2012)
provide a comprehensive analysis of this type and implement two-factor affine
Gaussian and quadratic Gaussian shadow-rate models.

Kim and Singleton (2012) derive the partial differential equation (PDE) that
bond prices must satisfy under the restriction that the risk-free rate used for
discounting is the greater of the shadow rate or zero,

∂P
∂τ

− 1
2

tr
( ∂2P
∂x∂x

��′)− ∂P
∂x

KQ(θQ −x)+max{0,s(x)}P=0, P(0,x)=1. (2)
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They solve this PDE using a finite-difference method. Unfortunately, for more
than two factors, such numerical methods render it very difficult to solve the
associated higher-dimensional PDE systems within a reasonable time.6 This is a
severe limitation to estimating shadow-rate models since the bond pricing literature
has focused on models with at least three factors driving bond yields.

1.2 Option-Based Shadow-Rate Models

To overcome the curse of dimensionality that limits numerical-based estimation
of shadow-rate models, Krippner (2012) suggested an alternative option-based
approach that could make shadow-rate models almost as easy to estimate as the
corresponding non-shadow-rate model. In particular, estimation of option-based
shadow-rate models with more than two state variables could be tractable.

To illustrate this new approach, consider two bond-pricing situations that differ
only because one has a currency in circulation that has a constant nominal value
and no transaction costs, while the other has no currency. In the world without
currency, the price of a shadow-rate zero-coupon bond, P(t,T), may trade above
par, as its risk-neutral expected instantaneous return equals the risk-free shadow
short rate, st, which may be negative.7 In contrast, in the world with currency, the
price at time t for a zero-coupon bond that pays $1 when it matures at time T is
given by P(t,T). This price will never rise above par, so nonnegative yields will
never be observed. Consider the relationship between the two bond prices at time
t for the shortest (say, overnight) maturity available, δ. In the presence of currency,
investors can either buy the zero-coupon bond at price P(t,t+δ) and receive one
unit of currency the following day or just hold the currency. As a consequence, this
bond price, which would equal the shadow bond price, must be capped at 1:

P(t,t+δ) = min{1,P(t,t+δ)}
= P(t,t+δ)−max{P(t,t+δ)−1,0}.

That is, the availability of currency implies that the overnight claim has a value
equal to the zero-coupon shadow bond price minus the value of a call option on
the zero-coupon shadow bond with a strike price of 1. More generally, we can
express the price of a bond in the presence of currency as the price of a shadow
bond minus the call option on values of the bond above par:

P(t,T)=P(t,T)−CA(t,T,T;1), (3)

6Richard (2013) goes beyond Kim and Singleton (2012) and presents a second-order approximation to a
three-factor Black (1995) model using a four-dimensional lattice grid with more than 10 million nodes,
and even then any instantaneous correlation between the state variables has to be ignored to calculate
bond prices.

7The modeling approach with unobserved, or “shadow,” components has an analogy in the corporate
credit literature. There, it is frequently assumed that the asset value process of a firm exists but is
unobserved. Instead, prices of the firm’s equity and corporate debt, which can be interpreted as derivatives
written on the firm’s assets (see Merton, 1974), are used to draw inferences about the asset value process.
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where CA(t,t,T;1) is the value of an American call option at time t with maturity T
and strike price 1 written on the shadow bond maturing at T. In essence, in a world
with currency, the bond investor has had to sell off the possible gain from the bond
rising above par at any time prior to maturity.

Unfortunately, analytically valuing this American option is complicated by
the difficulty in determining the early exercise premium. However, Krippner
(2012) argues that there is an analytically close approximation based on tractable
European options.8 Specifically, he argues that the above discussion suggests that
the last incremental forward rate of any bond will be nonnegative due to the
future availability of currency in the immediate time prior to its maturity. As a
consequence, he introduces the following auxiliary bond price equation

Pa(t,T,T+δ)=P(t,T+δ)−CE(t,T,T+δ;1), (4)

where CE(t,T,T+δ;1) is the value of a European call option at time t with maturity
T and strike price 1 written on the shadow discount bond maturing at T+δ. It
should be stressed that Pa(t,T,T+δ) is not identical to the bond price P(t,T) in
Equation (3) whose yield observes the zero lower bound.

The key insight is that the last incremental forward rate of any bond will be
nonnegative due to the future availability of currency in the immediate time prior
to its maturity. By letting δ→0, this idea is taken to its continuous limit, which
identifies the corresponding nonnegative instantaneous forward rate:

f (t,T)= lim
δ→0

[
− d

dδ
Pa(t,T,T+δ)

]
. (5)

Now, the discount bond prices whose yields observe the zero lower bound are
approximated by

Papp.(t,T)=e−∫ T
t f (t,s)ds

. (6)

The auxiliary bond price drops out of the calculations, and we are left with formulas
for the nonnegative forward rate, f (t,T), that are solely determined by the properties
of the shadow rate process st. Specifically, Krippner (2012) shows that

f (t,T)= f (t,T)+z(t,T),

where f (t,T) is the instantaneous forward rate on the shadow bond, which may go
negative, while z(t,T) is given by

z(t,T)= lim
δ→0

[
d
dδ

{CE(t,T,T+δ;1)
P(t,T)

}]
.

In addition, it holds that the observed instantaneous risk-free rate respects the
nonnegativity equation (1) as in the Black (1995) model.

8Krippner (2012, 2013a) describes the option-based shadow-rate framework as a portfolio of a continuum
of European options, unlike our description based on a single American option, but the ultimate pricing
formula is the same.
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Finally, yield-to-maturity is defined the usual way as

y(t,T) = 1
T−t

∫ T

t
f (t,s)ds

= 1
T−t

∫ T

t
f (t,s)ds+ 1

T−t

∫ T

t
lim
δ→0

[ ∂
∂δ

CE(t,s,s+δ;1)
P(t,s)

]
ds

= y(t,T)+ 1
T−t

∫ T

t
lim
δ→0

[ ∂
∂δ

CE(t,s,s+δ;1)
P(t,s)

]
ds.

It follows that bond yields constrained at the ZLB can be viewed as the sum of the
yield on the unconstrained shadow bond, denoted y(t,T), which is modeled using
standard tools, and an add-on correction term derived from the price formula for
the option written on the shadow bond that provides an upward push to deliver
the higher nonnegative yields actually observed. Importantly, the result above is
general and applies to any assumptions made about the dynamics of the shadow-
rate process. However, in reality, as implementation requires the calculation of the
limit term under the integral, the option-based shadow-rate models are limited to
the Gaussian model class.

It is important to stress that since the observed discount bond prices defined in
Equation (6) differ from the auxiliary bond price defined in Equation (4) and used
in the construction of the nonnegative forward rate in Equation (5), the option-
based framework should be viewed as not fully internally consistent and simply
an approximation to an arbitrage-free model.9 Of course, away from the ZLB, with
a negligible call option, the model will match the standard arbitrage-free term
structure representation.

Some may find the lack of a theoretically airtight option-based arbitrage-
free formulation disconcerting. However, this feature should be put in context
of the rest of the shadow-rate modeling literature, which is invariably plagued
by approximation. Although many empirical shadow-rate term structure papers
start with a theoretically consistent model, various simplifications are made to
facilitate empirical implementation. For example, Ichiue and Ueno (2013) start with
a rigorous framework, but in their estimation, they omit Jensen’s inequality terms
to obtain a solution. Alternatively, Kim and Singleton (2012) rigorously solve a PDE
using a finite-difference method, but the numerical burden restricts their results to
a two-factor model, which is widely considered too parsimonious to be realistic.
In implementing the option-based approach, we keep in mind the adage: “There
are no true models—only useful ones.” Thus, the question becomes how good

9In particular, there is no explicit PDE that bond prices must satisfy, including boundary conditions, for
the absence of arbitrage as in Kim and Singleton (2012) and shown in Equation (2). An additional source
of discrepancy between the option-based framework and Black’s shadow-rate model is the fact that all
discounting in the former is done with the shadow rate, while, in the latter, it is done with the constrained
short rate in equation (1), see Krippner (2013a) for a discussion.
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the option-based shadow-rate approximation is near the ZLB. Krippner (2012)
compares the option-based results to analytical ones for a calibrated Gaussian one-
factor model, and suggests that the approximation can be quite good. We go further
and examine this issue in the context of an estimated three-factor model below.
While analytical results are not available for a three-factor model comparison, we
use simulation-based results as a benchmark and find that the approximation error
is quite small.

2 THE SHADOW-RATE AFNS MODEL

In this section, we consider a Gaussian model that leads to tractable formulas
for bond yields in the option-based shadow-rate framework. To model the risk-
free shadow rate, we employ the affine arbitrage-free class of Nelson–Siegel term
structure models derived in CDR. This class of models is very tractable to estimate
and has good in-sample fit and out-of-sample forecast accuracy.10 Here, we extend
the AFNS model to incorporate a nonnegativity constraint on observed yields.

2.1 The Standard AFNS(3) Model

We first briefly describe the standard three-factor AFNS(3) model, which ignores
the ZLB on yields. In this class of models, the risk-free rate, which we take to be the
potentially unobserved shadow rate, is given by

st =X1
t +X2

t ,

while the dynamics of the state variables (X1
t ,X

2
t ,X

3
t ) used for pricing under the

Q-measure have the following structure:11

⎛⎝ dX1
t

dX2
t

dX3
t

⎞⎠=−
⎛⎝ 0 0 0

0 λ −λ
0 0 λ

⎞⎠⎛⎝X1
t

X2
t

X3
t

⎞⎠dt+
⎛⎝ σ11 0 0
σ21 σ22 0
σ31 σ32 σ33

⎞⎠
⎛⎜⎝ dW1,Q

t
dX2,Q

t
dX3,Q

t

⎞⎟⎠. (7)

The AFNS model dynamics under the Q-measure may appear restrictive, but CDR
show this structure coupled with general risk pricing provides a very flexible

10See, for example, the discussion and references in Diebold and Rudebusch (2013).
11We have fixed the mean under the Q-measure at zero and assumed a lower triangular structure for the

volatility matrix, which comes at no loss of generality, as described by CDR. As discussed in CDR, with a
unit root in the level factor under the pricing probability measure, the model is not arbitrage-free with an
unbounded horizon; therefore, as is often done in theoretical discussions, an arbitrary maximum horizon
is imposed.
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modeling structure. Indeed, CDR demonstrate that this specification implies zero-
coupon bond yields that have the popular Nelson and Siegel (1987) factor loading
structure,

y(t,T)=X1
t +
(1−e−λ(T−t)

λ(T−t)

)
X2

t +
(1−e−λ(T−t)

λ(T−t)
−e−λ(T−t)

)
X3

t − A(t,T)
T−t

.

In this formulation, the three factors, X1
t , X2

t , and X3
t , are identified by the loadings

as level, slope, and curvature, respectively. The yield function also contains a yield-
adjustment term, A(t,T)

T−t , that is time invariant and depends only on the maturity
of the bond. CDR provide an analytical formula for this term, which under our
identification scheme is entirely determined by the volatility matrix.

The corresponding instantaneous forward rates are given by

f (t,T)=− ∂

∂T
lnP(t,T)=X1

t +e−λ(T−t)X2
t +λ(T−t)e−λ(T−t)X3

t +Af (t,T), (8)

where the yield-adjustment term in the instantaneous forward rate function is
given by

Af (t,T) = −∂A(t,T)
∂T

= −1
2
σ 2

11(T−t)2 − 1
2

(σ 2
21 +σ 2

22)
(1−e−λ(T−t)

λ

)2
−1

2
(σ 2

31 +σ 2
32 +σ 2

33)
[ 1
λ2 − 2

λ2 e−λ(T−t) − 2
λ

(T−t)e−λ(T−t)

+ 1
λ2 e−2λ(T−t) + 2

λ
(T−t)e−2λ(T−t) +(T−t)2e−2λ(T−t)

]
−σ11σ21(T−t)

1−e−λ(T−t)

λ

−σ11σ31

[1
λ

(T−t)− 1
λ

(T−t)e−λ(T−t) −(T−t)2e−λ(T−t)
]

−(σ21σ31 +σ22σ32)
[ 1
λ2 − 2

λ2 e−λ(T−t) − 1
λ

(T−t)e−λ(T−t) + 1
λ2 e−2λ(T−t)

+ 1
λ

(T−t)e−2λ(T−t)
]
.

2.2 Bond Option Prices

To implement the option-based approach to the shadow-rate model, we need the
analytical formula for the price of the European call option written on the shadow
bond described above.
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From standard asset pricing theory it follows that the value of a European
call option with maturity T and strike price K written on the zero-coupon bond
maturing at T+δ is given by

CE(t,T,T+δ;K)=EQ
t

[
e−∫ T

t sudumax{P(T,T+δ)−K,0}
]
.

Unreported calculations show that the value of the European call option within the
AFNS(3) model is given by12

CE(t,T,T+δ;K) = P(t,T+δ)	(d1)−KP(t,T)	(d2),

where 	(·) is the cumulative probability function for the standard normal
distribution and

d1 =
ln
(

P(t,T+δ)
P(t,T)K

)
+ 1

2 v(t,T,T+δ)√
v(t,T,T+δ) and d2 =d1 −√v(t,T,T+δ)

with

v(t,T,T+δ) = σ 2
11δ

2(T−t)+(σ 2
21 +σ 2

22)
( 1−e−λδ

λ

)2 1−e−2λ(T−t)

2λ

+(σ 2
31 +σ 2

32 +σ 2
33)

[( 1−e−λδ

λ

)2 1−e−2λ(T−t)

2λ

+e−2λδ
[ δ2 −(T+δ−t)2e−2λ(T−t)

2λ
+ δ−(T+δ−t)e−2λ(T−t)

2λ2 + 1−e−2λ(T−t)

4λ3

]
− 1

2λ
(T−t)2e−2λ(T−t) − 1

2λ2 (T−t)e−2λ(T−t) + 1−e−2λ(T−t)

4λ3

− (1−e−λδ)e−λδ

λ2

[
δ−(T+δ−t)e−2λ(T−t) + 1−e−2λ(T−t)

2λ

]
+ 1−e−λδ

λ2

[ 1−e−2λ(T−t)

2λ
−(T−t)e−2λ(T−t)

]
+ 1
λ
δe−λδ[(T−t)e−2λ(T−t) − 1−e−2λ(T−t)

2λ

]
+ 1
λ

e−λδ[(T−t)2e−2λ(T−t) + 1
λ

(T−t)e−2λ(T−t) − 1−e−2λ(T−t)

2λ2

]]

+2σ11σ21δ(1−e−λδ) 1−e−λ(T−t)

λ2

+2σ11σ31δ
[
− 1
λ

(T−t)e−λ(T−t) − 1
λ

e−λδ(δ−(T+δ−t)e−λ(T−t)
)
+2(1−e−λδ) 1−e−λ(T−t)

λ2

]

12The calculations leading to this result are available from the authors upon request. For European options,
the put-call parity applies. As a consequence, the value of European put options written on P(t,T+δ) can
be similarly calculated; see Chen (1992) for details.
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+(σ21σ31 +σ22σ32)

[( 1−e−λδ

λ

)2 1−e−2λ(T−t)

λ

+ 1
λ2 e−2λδ

[
δ−(T+δ−t)e−2λ(T−t) + 1−e−2λ(T−t)

2λ

]
+ 1
λ2

[
−(T−t)e−2λ(T−t) + 1−e−2λ(T−t)

2λ

]
− 1
λ2 e−λδ[δ−(2T+δ−2t)e−2λ(T−t) + 1−e−2λ(T−t)

λ

]]
.

2.3 The Shadow-Rate B-AFNS(3) Model

We refer to the complete three-factor shadow-rate model as the B-AFNS(3) model.13

Given the above AFNS(3) shadow-rate process and the price of a shadow bond
option, we are now ready to price bonds that observe the nonnegativity constraint
in a B-AFNS(3) model.

Krippner (2012) provides a formula for the ZLB instantaneous forward rate,
f (t,T), that applies to any Gaussian model

f (t,T)= f (t,T)	
( f (t,T)
ω(t,T)

)
+ω(t,T)

1√
2π

exp
(
− 1

2

[ f (t,T)
ω(t,T)

]2)
,

where f (t,T) is the shadow forward rate and ω(t,T) is related to the conditional
variance appearing in the shadow bond option price formula as follows:

ω(t,T)2 = 1
2

lim
δ→0

∂2v(t,T,T+δ)
∂δ2 .

Within the B-AFNS(3) model, the formula for the shadow forward rate, f (t,T),
is provided by equation (8), while ω(t,T) takes the following form:14

ω(t,T)2 = σ 2
11(T−t)+(σ 2

21 +σ 2
22)

1−e−2λ(T−t)

2λ

+(σ 2
31 +σ 2

32 +σ 2
33)
[1−e−2λ(T−t)

4λ
− 1

2
(T−t)e−2λ(T−t) − 1

2
λ(T−t)2e−2λ(T−t)

]
+2σ11σ21

1−e−λ(T−t)

λ
+2σ11σ31

[
−(T−t)e−λ(T−t) + 1−e−λ(T−t)

λ

]
+(σ21σ31 +σ22σ32)

[
−(T−t)e−2λ(T−t) + 1−e−2λ(T−t)

2λ

]
.

13Following Kim and Singleton (2012), the prefix “B-” refers to a shadow-rate model in the spirit of Black
(1995), while the number shows the number of state variables. Krippner (2012), 2013b) adopts the prefix
CAB for “currency-adjusted bond."

14The calculations leading to this result are available from the authors upon request.
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Now, the zero-coupon bond yields that observe the ZLB, denoted y(t,T), are easily
calculated as

y(t,T)= 1
T−t

∫ T

t

[
f (t,s)	

( f (t,s)
ω(t,s)

)
+ω(t,s)

1√
2π

exp
(
− 1

2

[ f (t,s)
ω(t,s)

]2)]
ds. (9)

As highlighted by Krippner (2012), with Gaussian shadow-rate dynamics, the calcu-
lation of zero-coupon bond yields involves only a single integral independent of the
factor dimension of the model, which greatly facilitates empirical implementation.

2.4 Nonzero Lower Bound for the Short Rate

In this section, we generalize the model and consider a lower bound for the short
rate that may differ from zero, i.e.

rt =max{rmin,st}.

A few papers have used a nonzero lower bound for the short rate. In the case of U.S.
Treasury yields, Wu and Xia (2013) simply fix the lower bound at 25 basis points.
A similar approach is applied to Japanese, UK, and U.S. yields by Ichiue and Ueno
(2013).15 As an alternative, Kim and Priebsch (2013) treat rmin as a free parameter to
be estimated, and using U.S. Treasury yields, they obtain a value of 14 basis points.

In our setting, to derive the implications for the yield function, we merely
change the strike price of the bond option from 1 to K =e−rminδ in the formulas
in Section 1.2. Thus, the general formula for the yield that respects the rmin lower
bound is given by

y(t,T)=y(t,T)+ 1
T−t

∫ T

t
lim
δ→0

[ ∂
∂δ

CE(t,s,s+δ;e−rminδ)
P(t,s)

]
ds.

It follows that the forward rate that respects the rmin lower bound is16

f (t,T)=rmin +(f (t,T)−rmin)	
( f (t,T)−rmin

ω(t,T)

)
+ω(t,T)

1√
2π

exp
(
− 1

2

[ f (t,T)−rmin

ω(t,Ts)

]2)
,

where the shadow forward rate, f (t,T), and ω(t,T) remain as before.
However, we remain quite sceptical about the use of a non-zero rmin. In part, this

is because they have not been well motivated. This is especially true for rmin values

15For Japan, Ichiue and Ueno (2013) impose a lower bound of 9 basis points from January 2009 to December
2012 and reduce it to 5 basis points thereafter. For the United States, they use a lower bound of 14 basis
points starting in November 2009. Finally, for the UK, they assume the standard zero lower bound for the
short rate.

16The calculations leading to this result are available from the authors upon request.
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that are greater than the observed yields in the sample (and U.S. Treasury yields have
reached a low of −1 basis point in recent years). In addition, our own unreported
results indicate that the estimated value of the shadow rate can be very sensitive
to the value of rmin. Similarly, using U.S. Treasury yields, Bauer and Rudebusch
(2013) find that the value of the shadow short rate is quite sensitive across a range
of values for rmin. Thus, in general, the lower bound for the short rate, rmin, should
be chosen with care. In the context of our Japanese data, the data indeed suggest
that zero is the appropriate lower bound with the lowest one- and two-year yields
recorded being 0.0 basis point and 1.3 basis point, respectively, while the six-month
yield breaches the zero bound on a few occasions, but is never lower than −2 basis
points.

2.5 Market Prices of Risk

So far, the description of the B-AFNS(3) model has relied solely on the dynamics of
the state variables under the Q-measure used for pricing. However, to complete
the description of the model and to implement it empirically, we will need
to specify the risk premiums that connect the factor dynamics under the Q-
measure to the dynamics under the real-world (or historical) P-measure. It is
important to note that there are no restrictions on the dynamic drift components
under the empirical P-measure beyond the requirement of constant volatility.
To facilitate empirical implementation, we use the extended affine risk premium
developed by Cheridito, Filipović, and Kimmel (2007). In the Gaussian framework,
this specification implies that the risk premiums �t depend on the state variables;
that is,

�t =γ 0 +γ 1Xt,

where γ 0 ∈R3 and γ 1 ∈R3×3 contain unrestricted parameters.17 The relationship
between real-world yield curve dynamics under the P-measure and risk-neutral
dynamics under the Q-measure is given by

dWQ
t =dWP

t +�tdt.

Thus, the P-dynamics of the state variables are

dXt =KP(θP −Xt)dt+�dWP
t , (10)

where both KP and θP are allowed to vary freely relative to their counterparts under
the Q-measure.

Finally, we note that the model estimation is based on the extended Kalman
filter and described in Appendix A.

17For Gaussian models, this specification is equivalent to the essentially affine risk premium specification
introduced in Duffee (2002).
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Figure 1 Japanese government bond yields. We show time-series plots of Japanese government
bond yields at weekly frequency, at maturities of 6 months, 1 year, 4 years, and 10 years. The data
cover the period from January 6, 1995, to May 3, 2013.

3 DATA

The bulk of our sample of Japanese government bond yields is identical to the
data set examined by Kim and Singleton (2012).18 Their data set contains six
maturities: six-month yields and one-, two-, four-, seven-, and ten-year yields,
and all yields are continuously compounded and measured weekly (Fridays). The
Kim and Singleton (2012) sample, however, covers only January 6, 1995, to March
7, 2008, and so ends before the recent global financial crisis episode, which was
marked by extremely low bond yields in Japan and in many other countries. This
recent episode is extremely interesting to consider from a variety of economic
and finance perspectives; therefore, we augment the original Kim and Singleton
(2012) sample with Japanese government zero-coupon yields downloaded from
Bloomberg through May 3, 2013.19

Figure 1 shows the variation over time in four of the six yields. During
two periods—from 2001 to 2005 and from 2009 to 2013—six-month and one-year
yields are pegged near zero. These episodes are obvious candidates for possible
negative shadow rates. As noted by Kim and Singleton (2012), these periods also

18We thank Don Kim for sharing these data.
19When the two sources of data overlap during 2007 and 2008, the two sets of yields match almost exactly.
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Table 1 Factor loadings for Japanese government bond yields

Maturity
(months)

Loading on

First P.C. Second P.C. Third P.C.

6 −0.21 −0.49 0.53
12 −0.23 −0.50 0.25
24 −0.31 −0.43 −0.32
48 −0.45 −0.15 −0.57
84 −0.57 0.33 −0.11
120 −0.53 0.44 0.46

% explained 93.48 5.85 0.51

The first six rows show how bond yields at various maturities load on the first three principal components.
The bottom row shows the proportion of all bond yield variability explained by each principal component.
The data are weekly Japanese government bond yields from January 6, 1995, to May 3, 2013.

display reduced volatility of short- and medium-term yields due to the zero bound
constraint.

Researchers have found that three factors are typically needed to model the
time-variation in cross sections of bond yields (e.g., Litterman and Scheinkman,
1991). Indeed, for our sample of Japanese bond yields, 99.84 percent of the total
variation is accounted for by three factors. As Table 1 reports, the first principal
component loading’s across maturities (the associated eigenvector) is uniformly
negative, so like a level factor, a shock to this component changes all yields in
the same direction irrespective of maturity. The second principal component is
a slope factor, as a shock to this component steepens or flattens the yield curve.
Finally, the third component has a U-shaped factor loading as a function of maturity,
which is naturally interpreted as a curvature factor. This pattern of level, slope, and
curvature motivates our use of the Nelson–Siegel level, slope, and curvature factors
for modeling Japanese bond yields, even though we emphasize that our estimated
state variables are not identical to the principal components.

4 RESULTS

In this section, we describe and assess one-, two-, and three-factor empirical
shadow-rate models. We first compare the shadow-rate model fit to the data—
relative to each other and to non-shadow-rate dynamic term structure models.
We also discuss some of the advantages of using Gaussian shadow-rate models
over standard Gaussian models in a near-ZLB environment. Next, we evaluate the
closeness of the option-based approximation to a matching simulated shadow-rate
model, before we study the efficiency of the extended Kalman filter in estimating
shadow-rate models. Finally, we examine the sensitivity of the shadow short rate
to the number of factors in the model.
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4.1 In-sample Fit of Standard and Shadow-Rate Models

We begin by considering the simplest possible case for the shadow-rate dynamics,
namely the one-factor Gaussian model of Vasiček (1977). Although this model may
seem to be too simple to be of interest, it has been employed by several previous
studies20 and is a useful tool for comparison. In this one-factor case, the factor
dynamics of the shadow rate st used for pricing under the risk-neutral Q-measure
are

dst =κQ(θQ −st)dt+σdWQ
t ,

with the risk-free rate given by the greater of the shadow rate or zero:

rt =max{0,st}.

The instantaneous forward rate is given by

f (t,T)=e−κQ(T−t)st +θQ(1−e−κQ(T−t))− 1
2
σ 2
(1−e−κQ(T−t)

κQ

)2
,

while

ω(t,T)2 =σ 2 1−e−2κQ(T−t)

2κQ .

Allowing for time-varying risk premiums, the dynamics under the objective P-
measure are fully flexible,

dst =κP(θP −st)dt+σdWP
t .

We refer to this representation inspired by Black (1995) as the B-V(1) model. We also
estimate the standard Vasiček (1977) model, denoted as the V(1) model, without
the nonnegativity constraint or the shadow-rate interpretation.

Table 2 reports the summary statistics of the fitted errors for the V(1) and B-V(1)
models.21 The better fit of the B-V(1) model across all yield maturities is notable,
with an average root mean-squared error (RMSE) improvement of 1.7 basis points.
This better fit can also be seen in the higher likelihood value of the B-V(1) model.

To most closely approximate the two-factor Gaussian shadow-rate model of
Kim and Singleton (2012),22 we estimate a two-factor version of the B-AFNS model
that has level and slope factors but no curvature factor. This model is characterized
by a shadow rate given by

st =X1
t +X2

t .

20These include Gorovoi and Linetsky (2004), Ueno, Baba, and Sakurai (2006), and Krippner (2012).
21The estimated parameters of all models in this section are provided in Appendix B.
22This is their B-AG2 model.
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Table 2 Summary statistics of model fit

Maturity in months

RMSE 6 12 24 48 84 120 All yields Max logL

One-factor models
V(1) 5.8 0.0 12.1 32.8 55.6 52.4 34.4 28,362.97
B-V(1) 4.9 0.2 10.9 30.2 52.5 50.8 32.7 29,263.60

Two-factor models
AFNS(2) 5.9 0.0 9.0 17.6 21.6 0.0 12.2 32,186.23
B-AFNS(2) 6.6 0.3 8.9 14.6 17.0 3.2 10.3 32,808.21

Three-factor models
AFNS(3) 0.0 2.4 0.2 4.2 0.0 23.3 9.7 35,469.67
B-AFNS(3) 0.4 2.1 0.3 3.5 0.7 16.7 7.0 36,520.00

The table presents the root mean-squared error of the fitted bond yields from one-, two-, and three-factor
models estimated on the weekly Japanese government bond yield data over the period from January 6,
1995, to May 3, 2013. All numbers are measured in basis points. The last column reports the obtained
maximum log-likelihood values.

The state variables (X1
t ,X

2
t ) used for pricing under the risk-neutral Q-measure have

the following dynamics:(
dX1

t

dX2
t

)
=−
(

0 0
0 λ

)(
X1

t

X2
t

)
dt+
(
σ11 0
σ21 σ22

)(
dW1,Q

t

dX2,Q
t

)
.

As for the P-dynamics, we focus on the most flexible specification with full KP

matrix (
dX1

t

dX2
t

)
=
(
κP

11 κ
P
12

κP
21 κ

P
22

)[(
θP

1

θP
2

)
−
(

X1
t

X2
t

)]
dt+
(
σ11 0
σ21 σ22

)(
dW1,P

t

dW2,P
t

)
.

This model has a total of ten parameters, two less than the canonical B-AG2
model used by Kim and Singleton (2012). We estimate both the standard version of
this model without any constraints related to the ZLB, denoted as the AFNS(2)
model, and the corresponding shadow-rate model, denoted as the B-AFNS(2)
model.

Table 2 also reports summary statistics for the fit of the two-factor models. The
AFNS(2) model performs reasonably well, but the B-AFNS(2) model has smaller
yield RMSEs. The fit of the B-AFNS(2) model is comparable to the B-AG2 model
estimated in Kim and Singleton (2012) even though the B-AFNS(2) model has fewer
parameters under the Q-dynamics used for pricing.23

23Our RMSEs are very close to our estimated error standard deviations, σ̂ε(τi), and to the estimated error
deviations reported by Kim and Singleton (2012).
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Finally, we extend the analysis to three-factor models. In the AFNS(3) model,
the risk-neutral Q-dynamics used for pricing are as detailed in Section 2, while we
assume fully flexible factor dynamics under the P-measure:⎛⎜⎝ dX1

t

dX2
t

dX3
t

⎞⎟⎠=
⎛⎜⎝ κ

P
11 κ

P
12 κ

P
13

κP
21 κ

P
22 κ

P
23

κP
31 κ

P
32 κ

P
33

⎞⎟⎠
⎡⎢⎣
⎛⎜⎝ θ

P
1

θP
2

θP
3

⎞⎟⎠−
⎛⎜⎝X1

t

X2
t

X3
t

⎞⎟⎠
⎤⎥⎦dt+
⎛⎝ σ11 0 0
σ21 σ22 0
σ31 σ32 σ33

⎞⎠
⎛⎜⎜⎝

dW1,P
t

dW2,P
t

dW3,P
t

⎞⎟⎟⎠.

Table 2 reports the summary statistics of the fitted errors of the regular
AFNS(3) model as well as its shadow-rate version, B-AFNS(3). Similar to what
we observed for the two-factor models, the shadow-rate model outperforms its
standard counterpart when it comes to model fit. In comparing model fit across
the two- and three-factor models, the AFNS(3) model is on par with the B-AFNS(2)
model, while the B-AFNS(3) model has a bit closer fit than either of them.

4.2 Why Use a Shadow-Rate Model?

Before turning to an analysis of the shadow rate models, it is useful to reinforce the
basic motivation for our analysis by examining short rate forecasts and volatility
estimates from the estimated AFNS(3) model. With regard to short rate forecasts,
any standard affine Gaussian dynamic term structure model may place positive
probabilities on future negative interest rates. Accordingly, Figure 2 shows the
probability obtained from the AFNS(3) model that the short rate three months
out will be negative. Over much of the sample, the probabilities of future negative
interest rates are negligible. However, near the ZLB—from 1999 to 2005 and from
2009 through the end of our sample—the model is typically predicting substantial
likelihoods of impossible realizations.

Another serious limitation of the standard Gaussian model is the assumption of
constant yield volatility, which is particularly unrealistic when periods of normal
volatility are combined with periods in which yields are greatly constrained in
their movements near the ZLB. Again, a shadow-rate model approach can mitigate
this failing significantly. Figure 3 shows the implied three-month conditional yield
volatility of the two-year yield from the AFNS(3) and B-AFNS(3) models24 along
with a comparison to the three-month realized volatility of the two-year yield
calculated from our sample using daily frequency.25 While the conditional yield
volatility from the AFNS(3) model is constant, the conditional yield volatility
from the B-AFNS(3) model closely matches the realized volatility series—with a

24For the AFNS(3) model conditional yield volatilities can be calculated using the formulas provided in
Fisher and Gilles (1996), while conditional yield volatilities in the B-AFNS(3) model must be generated
via Monte Carlo simulation.

25As in Kim and Singleton (2012), these are the rolling standard deviation of daily yield changes over 60
trading-day windows.
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Figure 2 Probability of negative short rates. Illustration of the conditional probability of negative
short rates three months ahead from the AFNS(3) model.

correlation of 72 percent. Particularly noteworthy is the B-AFNS(3) model’s ability to
produce nearzero yield volatility when yields are at their lowest (during 2001–2005
and 2009–2013).

4.3 How Good is the Option-Based Approximation?

As noted above, the option-based approach does not constitute a formal derivation
of arbitrage-free pricing relationships, but merely represents an approximation of
such relationships. Therefore, in this subsection, we analyze how closely the option-
based bond pricing from the estimated B-AFNS(3) model matches an arbitrage-free
bond pricing that is obtained from the same model using Black’s (1995) approach
based on Monte Carlo simulations.

As a motivating comparison, Figure 4 shows analytical and simulation-based
yield curves and option-based and simulation-based shadow yield curves from
the estimated B-AFNS(3) model as of January 9, 2004—which is during a Japanese
ZLB period. The simulation-based shadow yield curve is obtained from 25,000
10-year long factor paths generated using the estimated Q-dynamics of the state
variables in the B-AFNS(3) model, which, ignoring the nonnegativity Equation (1),
are used to construct 25,000 paths for the shadow short rate. These are converted
into a corresponding number of shadow discount bond paths and averaged for
each maturity before the resulting shadow discount bond prices are converted into
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Figure 3 Three-month conditional volatility of two-year yield. Illustration of the three-month
conditional volatility of the two-year yield implied by the estimated AFNS(3) and B-AFNS(3)
models. Also shown is the subsequent three-month realized volatility of the two-year yield based
on daily data.

yields. The simulation-based yield curve is obtained from the same underlying
25,000 Monte Carlo factor paths, but at each point in time in the simulation, the
resulting short rate is constrained by the nonnegativity Equation (1) as in Black
(1995). The shadow-rate curve from the B-AFNS(3) model can also be calculated
analytically via the usual affine pricing relationships, which ignore the ZLB. Note
that the simulated shadow yield curve is almost identical to this analytical shadow
yield curve. Any difference between these two curves is simply numerical error
that reflects the finite number of simulations. More interestingly, the differences
between the simulation-based and option-based yield curves are also hard to
discern. The minuscule discrepancies between these two yield curves show that
the approximation error associated with the option-based approach to calculating
bond yields near the ZLB is also very small in this instance.

To document that the close match between the option-based and the
simulation-based yield curves is not limited to one specific date, we repeated the
simulation exercise for the first observation in each year of our sample. Table 3
reports the resulting shadow yield curve differences and yield curve differences
for various maturities on these 19 dates. Again, the errors for the shadow yield
curves solely reflect simulation error as the model-implied shadow yield curve is
identical to the analytical arbitrage-free curve that would prevail without currency

 at U
niversity of C

alifornia, B
erkeley on M

ay 9, 2014
http://jfec.oxfordjournals.org/

D
ow

nloaded from
 

http://jfec.oxfordjournals.org/


[12:22 29/3/2014 nbu010.tex] JFINEC: Journal of Financial Econometrics Page: 22 1–34

22 Journal of Financial Econometrics

Table 3 Approximation errors in yields for three-factor model

Maturity in months

Dates 12 36 60 84 120

Shadow yields 0.10 −0.04 −0.42 −0.67 −0.76
1/2/95 Yields 0.07 −0.09 −0.46 −0.70 −0.61

Shadow yields 0.37 0.81 1.31 1.68 2.44
1/5/96 Yields 0.33 0.77 1.28 1.69 2.56

Shadow yields 0.04 0.06 0.19 −0.04 0.14
1/10/97 Yields 0.05 0.10 0.21 0.01 0.72

Shadow yields −0.05 −0.22 −0.23 −0.37 −0.95
1/9/98 Yields −0.02 −0.05 0.07 0.24 1.05

Shadow yields 0.00 −0.25 −0.34 −0.31 0.23
1/8/99 Yields −0.02 −0.23 −0.29 −0.10 1.36

Shadow yields −0.06 −0.17 0.04 −0.14 −1.02
1/7/00 Yields −0.07 −0.04 0.39 0.72 1.57

Shadow yields 0.07 0.58 0.75 0.61 0.06
1/5/01 Yields 0.08 0.56 1.03 1.45 2.58

Shadow yields 0.14 0.56 0.67 0.45 0.01
1/4/02 Yields 0.08 0.37 0.54 0.82 2.15

Shadow yields −0.11 0.31 0.32 0.38 0.60
1/10/03 Yields 0.00 0.26 0.83 1.74 3.97

Shadow yields −0.07 −0.26 −0.62 −0.79 −0.25
1/9/04 Yields −0.05 −0.11 −0.23 0.18 2.36

Shadow yields 0.19 0.24 0.29 0.31 −0.16
1/7/05 Yields 0.05 0.29 0.83 1.45 2.55

Shadow yields 0.27 0.27 0.37 0.91 1.91
1/6/06 Yields 0.12 0.25 0.44 1.23 3.28

Shadow yields 0.18 −0.13 −0.09 −0.09 −0.17
1/6/07 Yields 0.16 −0.13 0.07 0.51 2.23

Shadow yields −0.12 −0.03 −0.10 −0.27 −0.12
1/6/08 Yields −0.12 0.03 0.12 0.40 1.87

Shadow yields −0.36 −0.66 −0.34 −0.01 0.58
1/2/09 Yields −0.28 −0.30 0.20 0.80 2.73

Shadow yields 0.05 0.14 0.18 0.46 0.69
1/1/10 Yields −0.03 0.20 0.51 1.26 3.37

Shadow yields 0.23 −0.21 −0.88 −1.52 −2.44
1/7/11 Yields 0.05 0.07 0.04 0.21 1.36

Shadow yields 0.06 −0.10 −0.45 −0.40 0.09
1/6/12 Yields −0.01 −0.05 −0.07 0.56 2.89

Shadow yields 0.23 0.47 0.76 1.06 1.03
1/4/13 Yields 0.06 0.22 0.62 1.48 3.63

Average Shadow yields 0.14 0.29 0.44 0.55 0.72
absolute difference Yields 0.09 0.22 0.43 0.82 2.25

At each date, the table reports differences between the analytical shadow yield curve obtained from
the option-based estimates of the B-AFNS(3) model and the shadow yield curve obtained from 25,000
simulations of the estimated factor dynamics under the Q-measure in that model. The table also reports
for each date the corresponding differences between the fitted yield curve obtained from the B-AFNS(3)
model and the yield curve obtained via simulation of the estimated B-AFNS(3) model with imposition of
the ZLB. The bottom two rows give averages of the absolute differences across the 19 dates. All numbers
are measured in basis points.
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Figure 4 Fitted yield curves in three-factor shadow-rate models. Fitted and shadow yield curves
from an option-based estimated B-AFNS(3) model are shown as of January 9, 2004. In addition,
the corresponding curves are shown based on a simulation using Black’s (1995) approach and N =
25,000 paths of the state variables drawn using the option-based estimated B-AFNS(3) model factor
dynamics under the Q-measure.

in circulation. These simulation errors in Table 3 are typically very small in absolute
value, and they increase only slowly with maturity. Their average absolute value—
shown in the bottom row—is less than one basis point even at a 10-year maturity.
This implies that using simulations with a large number of draws (N = 25,000)
arguably delivers enough accuracy for the type of inference we want to make here.

Given this calibration of the size of the numerical errors involved in the
simulation, we can now assess the more interesting size of the approximation error
in the option-based approach to valuing yields in the presence of the ZLB. In Table
3, the errors of the fitted B-AFNS(3) model yield curve relative to the simulated
results are only slightly larger than those reported for the shadow yield curve. In
particular, for maturities up to seven years, the errors tend to be less than 1 basis
point, so the option-based approximation error adds very little if anything to the
numerical simulation error. At the 10-year maturity, the approximation errors are
understandably larger, but even the largest errors at the 10-year maturity do not
exceed 4 basis points in absolute value and the average absolute value is around 2
basis points. Overall, the option-based approximation errors in our three-factor
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setting appear relatively small. Indeed, they are smaller than the fitted errors
described in Table 2. That is, for the B-AFNS(3) model, the gain from using a
numerical estimation approach instead of the option-based approximation would
in all likelihood be negligible.

Of course, these favorable results on the modest size of the approximation error
may not generalize to all situations. We are aware of two other relevant examinations
of the option-based approach. First, Krippner (2012) reports approximation errors
closer to 6 basis points at the ten-year maturity for a calibrated one-factor Vasiček
model.26 Second, Christensen and Rudebusch (2013) find only a few basis points
approximation error for their B-AFNS(3) model estimated on U.S. Treasury yield
data.27 Ultimately, in future applications, we recommend examining the accuracy
of the option-based approximation as a routine matter using the simulation-
based validation described here. Indeed, we view the ready availability of a
validation methodology as a positive feature of the option-based approach.
In contrast, the computational burden of the theoretically rigorous approach
employed by Kim and Singleton (2012), which requires using a two-factor model
as an approximation to what is likely a three-factor data-generating process, does
not permit an investigation of the quality of that two-factor approximation.

4.4 How Efficient is the Extended Kalman Filter?

In the literature, various Kalman filtering methods have been used to estimate
shadow-rate models. Kim and Singleton (2012) use the standard extended Kalman
filter that we also rely upon throughout this paper. Kim and Priebsch (2013) apply
the unscented Kalman filter, while Krippner (2013a) uses the iterated extended
Kalman filter. In this section, to shed light on the efficiency of the standard extended
Kalman filter in estimating shadow-rate models, we re-estimate all three shadow-
rate models using the unscented Kalman filter as described in Filipović and Trolle
(2013).

Table 4 reports the summary statistics of the fitted errors in the one-, two-, and
three-factor shadow-rate models when estimated with both the extended Kalman
filter and the unscented Kalman filter. In terms of RMSEs, the differences are barely
noticeable. However, using the unscented Kalman filter does produce a marginally
better overall fit to the cross section of yields as reflected in the slightly higher
maximum log-likelihood values. Furthermore, unreported results show that both
the filtered paths and the estimated parameters are barely distinguishable for the
same model whether the extended or unscented Kalman filter is used for model
estimation.28 Since the extended Kalman filter is less computationally intensive

26Using our Monte Carlo simulation method, we replicated these one-factor results—namely, Table 6.1 of
Gorovoi and Linetsky (2004) and Tables 1 and 2 of Krippner (2012).

27Wu and Xia (2013) also use simulation-based validation of their U.S. shadow-rate model, which is a
discrete-time version of the Krippner framework, and report similar approximation errors.

28These results are available from the authors upon request.
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Table 4 Summary statistics of model fit

Maturity in months

RMSE 6 12 24 48 84 120 All yields Max logL

B-V(1) model
Extended KF 4.9 0.2 10.9 30.2 52.5 50.8 32.7 29,263.60
Unscented KF 5.0 0.2 10.8 30.2 52.4 50.8 32.6 29,279.22

B-AFNS(2) model
Extended KF 6.6 0.3 8.9 14.6 17.0 3.2 10.3 32,808.21
Unscented KF 6.7 0.4 8.8 14.5 17.0 3.2 10.3 32,815.83

B-AFNS(3) model
Extended KF 0.4 2.1 0.3 3.5 0.7 16.7 7.0 36,520.00
Unscented KF 0.4 2.2 0.3 3.5 0.4 16.7 7.0 36,528.49

The table presents the root mean-squared error of the fitted bond yields from one-, two-, and three-factor
models estimated on the weekly Japanese government bond yield data over the period from January 6,
1995, to May 3, 2013. All numbers are measured in basis points. The last column reports the obtained
maximum log-likelihood values.

than the unscented Kalman filter (the expensive yield function must be evaluated
less times in each time step), but still delivers almost identical results, we conclude
that the extended Kalman filter is efficient at estimating shadow-rate models, even
when yields are as low as in our sample where, presumably, the nonlinearity from
the zero lower bound would pose the biggest challenge.29

4.5 Shadow Short Rate Comparisons Across Models

Finally, we examine estimates of the shadow short rate, which has been
recommended by some to be a useful measure of the stance of monetary policy at the
ZLB (e.g., Bullard, 2012; Krippner, 2012, 2013b). Figure 5 shows the instantaneous
shadow short-rate paths implied by our one-, two-, and three-factor shadow-rate
models. Also, for comparison, we include the shadow-rate path from the B-AG2
model as estimated by Kim and Singleton (2012) for their sample from January 6,
1995, to March 7, 2008. The pairwise correlations between the estimated shadow-rate
paths range from 0.887 to 0.993. There is little disagreement across models when
the instantaneous rate is in positive territory; however, when the shadow rate is
negative, there can be pronounced differences among the levels of the estimated
shadow short rates across the one-, two-, and three-factor models, with the shadow
short rate from the B-AFNS(3) model generally the least negative. Furthermore, we
have found that even within each model class, there can be disagreement across

29This conclusion is consistent with the findings of Christoffersen et al. (2013), who conclude that, when
states are extracted from securities that are only mildly nonlinear in the state variables, such as interest
rate swaps, the extended Kalman filter is adequate.
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Figure 5 Model-implied shadow rates. Illustration of the model-implied shadow rate from the
B-V(1), B-AFNS(2), and B-AFNS(3) models. For comparison, we include the B-AG2 model shadow
rate estimated by Kim and Singleton (2012) through 2008.

specifications about how negative the shadow rate is depending on the parsimony
of the model.30

To further illustrate the source of the sensitivity of the shadow short rates to
model specification, we examine the two- and three-factor model fit on a specific
date, July 1, 2005, when the shadow rate attains a very low value according to most
models shown in Figure 5. Figure 6a illustrates observed yields on this date as well
as fitted yield curves from the AFNS(2) and B-AFNS(2) models, while Figure 6b
shows the corresponding output for the AFNS(3) and B-AFNS(3) models. For the
two-factor models, we note that the AFNS(2) model has difficulty matching the
kink in the observed yields around the two-year maturity point, which is very
pronounced during this period. On the other hand, for the three-factor models,
this distinction between standard and shadow-rate models is much less apparent.
It appears that the plain-vanilla AFNS(3) model has sufficient flexibility to handle
the kink even on this very challenging day in the sample.

30The diversity in our shadow short rates can be compared to other studies. Ueno, Baba, and Sakurai (2006)
calibrate one-factor version of the Black (1995) model on Japanese data and calculate a shadow short rate
that is typically lower than −5 percent, with the lowest reading falling below −15 percent in the summer
of 2002. Ichiue and Ueno (2007) use the Kalman filter to estimate a two-factor shadow-rate model on
monthly Japanese government bond yields and report shadow-rate values in a range from −1 to −0.5
percent for the 2001–2005 period.
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Figure 6 Fitted yield curves on July 1, 2005. The figure to the left illustrates the fitted yield curves
from the AFNS(2) and B-AFNS(2) models on July 1, 2005. Also shown are the six observed yields on
that date. The figure to the right shows the corresponding results for the AFNS(3) and B-AFNS(3)
models.

All in all, our results indicate that the shadow short rate is model specific and
likely not a useful measure of the stance of monetary policy when yields are near
the ZLB. At a minimum, a number of model specifications should be analyzed to
verify the robustness of any shadow short rate conclusions.

5 CONCLUSION

To adapt the Gaussian term structure model to the recent near-zero interest rate
environment, we have combined the arbitrage-free Nelson–Siegel model dynamics
with the option-based shadow-rate methodology of Krippner (2012). We derive the
relevant closed-form solution and estimate variants of this model—including the
first three-factor shadow-rate model—using near-zero Japanese yields. We find that
the option-based B-AFNS(3) shadow-rate model introduced in this article provides
a very close approximation to the results one would obtain by using a simulation-
based implementation of the same model as originally envisioned by Black (1995).
Based on this evidence, we conclude that the option-based shadow-rate model
class appears to be competitive for modeling yield curve dynamics in the current
near-zero yield environment. A useful next step in future research would be to
put this shadow-rate representation to work, say, making interest predictions or
valuing derivatives at the ZLB. For this, finding a preferred specification of the
shadow rate factor dynamics and dealing with any finite-sample estimation bias is
of importance.

Finally, although some have recommended using the shadow short rate as a
measure of the stance of monetary policy, we find that estimated shadow short rates
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are sensitive to the number of factors included in the estimation. Other aspects of
model specification—such as the maturities of yields included in the sample or
the ratio of near-ZLB yields to normal yield observations in the sample—would
also likely have an important influence on the shadow short rate, and we cannot
recommend it as a robust measure.

APPENDIX A: KALMAN FILTER ESTIMATION OF SHADOW-RATE
MODELS

In this appendix, we describe the estimation of the shadow-rate models based on
the extended Kalman filter.

For affine Gaussian models, in general, the conditional mean vector and the
conditional covariance matrix are

EP[XT |Ft] = (I−exp(−KP�t))θP +exp(−KP�t)Xt,

VP[XT |Ft] =
∫ �t

0
e−KPs��′e−(KP)′sds,

where �t=T−t. We compute conditional moments of discrete observations and
obtain the state transition equation

Xt = (I−exp(−KP�t))θP +exp(−KP�t)Xt−1 +ξt,

where �t is the time between observations. In the standard Kalman filter, the
measurement equation would be affine, in which case

yt =A+BXt +εt.

The assumed error structure is(
ξt
εt

)
∼N
[(

0
0

)
,

(
Q 0
0 H

)]
,

where the matrix H is assumed diagonal, while the matrix Q has the following
structure:

Q=
∫ �t

0
e−KPs��′e−(KP)′sds.

In addition, the transition and measurement errors are assumed orthogonal to the
initial state.

Now we consider Kalman filtering, which we use to evaluate the likelihood
function.

Due to the assumed stationarity, the filter is initialized at the unconditional
mean and variance of the state variables under the P-measure: X0 =θP and
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�0 =∫∞0 e−KPs��′e−(KP)′sds, which we calculate using the analytical solutions
provided in Fisher and Gilles (1996).

Denote the information available at time t by Yt = (y1,y2,...,yt), and denote
model parameters by ψ . Consider period t−1 and suppose that the state update
Xt−1 and its mean square error matrix �t−1 have been obtained. The prediction
step is

Xt|t−1 =EP[Xt|Yt−1]=	X,0
t (ψ)+	X,1

t (ψ)Xt−1,

�t|t−1 =	X,1
t (ψ)�t−1	

X,1
t (ψ)′+Qt(ψ),

where 	
X,0
t = (I−exp(−KP�t))θP, 	

X,1
t =exp(−KP�t), and Qt =∫ �t

0 e−KPs��′e−(KP)′sds, while �t is the time between observations.
In the time-t update step, Xt|t−1 is improved by using the additional information

contained in Yt. We have

Xt =E[Xt|Yt]=Xt|t−1 +�t|t−1B(ψ)′F−1
t vt,

�t =�t|t−1 −�t|t−1B(ψ)′F−1
t B(ψ)�t|t−1,

where
vt =yt −E[yt|Yt−1]=yt −A(ψ)−B(ψ)Xt|t−1,

Ft =cov(vt)=B(ψ)�t|t−1B(ψ)′+H(ψ),

H(ψ)=diag(σ 2
ε (τ1),...,σ 2

ε (τN)).

At this point, the Kalman filter has delivered all ingredients needed to evaluate
the Gaussian log likelihood, the prediction-error decomposition of which is

logl(y1,...,yT;ψ)=
T∑

t=1

(
− N

2
log(2π )− 1

2
log|Ft|− 1

2
v′

tF
−1
t vt

)
,

where N is the number of observed yields. We numerically maximize the likelihood
with respect to ψ using the Nelder–Mead simplex algorithm. Upon convergence,
we obtain standard errors from the estimated covariance matrix,

�̂(ψ̂)= 1
T

[ 1
T

T∑
t=1

∂ loglt(ψ̂)
∂ψ

∂ loglt(ψ̂)
∂ψ

′]−1
,

where ψ̂ denotes the estimated model parameters.
This completes the description of the standard Kalman filter. However, in the

shadow-rate models, the zero-coupon bond yields are not affine functions of the
state variables. Instead, the measurement equation takes the general form

yt =z(Xt;ψ)+εt.

In the extended Kalman filter we use, this equation is linearized through a first-
order Taylor expansion around the best guess of Xt in the prediction step of the
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Kalman filter algorithm. Thus, in the notation introduced above, this best guess is
denoted Xt|t−1 and the approximation is given by

z(Xt;ψ)≈z(Xt|t−1;ψ)+ ∂z(Xt;ψ)
∂Xt

∣∣∣
Xt=Xt|t−1

(Xt −Xt|t−1).

Now, by defining31

At(ψ)≡z(Xt|t−1;ψ)− ∂z(Xt;ψ)
∂Xt

∣∣∣
Xt=Xt|t−1

Xt|t−1 and Bt(ψ)≡ ∂z(Xt;ψ)
∂Xt

∣∣∣
Xt=Xt|t−1

,

the measurement equation can be given in an affine form as

yt =At(ψ)+Bt(ψ)Xt +εt,

and the steps in the algorithm proceeds as previously described.

APPENDIX B: PARAMETER ESTIMATION RESULTS

In this appendix, we report the estimated parameters for the one-, two-, and three-
factor standard and shadow-rate models discussed in the main text. Table B1 reports
the estimated parameters for both one-factor models. In terms of the Q-dynamics,
the very low values of κQ imply that the state variable is a level factor. This is also
reflected in its very high persistence under the P-dynamics. The estimated mean
values θP, which are the average levels of the state variable, are about the same in
each model. The largest difference between the models is that the B-V(1) model has
an estimated factor volatility about 40 percent larger than in the V(1) model.

Tables B2 and B3 report the estimated parameters for the AFNS(2) and B-
AFNS(2) models, respectively.

In the AFNS(2) and B-AFNS(2) models, the estimated λ values are low, which
indicates that the slope factor in each model operates almost as a level factor for
the fit to the cross section of yields. Beyond that, the estimated mean-reversion
matrix, mean vector, and volatility matrix share only a few broad similarities such
as positive θP

1 , negative θP
2 , and negative σ21 parameters, but in terms of magnitudes

the differences are sizeable.
Tables B4 and B5 contain the estimated parameters for the AFNS(3) and B-

AFNS(3) models. With the exception of the estimated λ values and � volatility
matrices, there are large differences in both signs and magnitudes for most
parameters across the two models. Furthermore, the estimated parameters for
the level and slope factors in the AFNS(3) models only vaguely resemble the

31We calculate these derivatives numerically. See Krippner (2013a) for alternative analytical formulas.
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Table B1 Parameter estimates of one-factor models

Parameter V(1) B-V(1)

κP 0.0311 0.0217
(0.0831) (0.1476)

θP 0.0097 0.0101
(0.0102) (0.0314)

σ 0.0029 0.0042
(0.0001) (0.0001)

κQ 0.0002 0.0003
(0.0002) (0.0002)

θQ 14.0501 12.6290
(10.0754) (8.4576)

Max logL 28,362.97 29,263.60

The estimated parameters are shown for the V(1) and B-V(1) models. The numbers in parentheses are
estimated parameter standard deviations.

Table B2 Parameter estimates of the AFNS(2) model

KP KP
·,1 KP

·,2 θP � �·,1 �·,2

KP
1,· −0.5292 −0.5451 0.0682 �1,· 0.0583 0

(1.3987) (1.4338) (0.0344) (0.0097)
KP

2,· 0.7142 0.6968 −0.0462 �2,· −0.0590 0.0029
(1.4338) (1.4662) (0.4186) (0.0097) (0.0000)

The estimated parameters of the KP matrix, the θP vector, and the � matrix are shown for the AFNS(2)
model. The associated estimated λ is 0.0179 (0.0031) with maturity measured in years. The numbers in
parentheses are estimated parameter standard deviations. The maximum log-likelihood value is 32,186.23.

Table B3 Parameter estimates of the B-AFNS(2) model

KP KP
·,1 KP

·,2 θP � �·,1 �·,2

KP
1,· 0.4096 0.5461 0.1111 �1,· 0.0076 0

(0.2187) (0.2375) (0.0781) (0.0003)
KP

2,· −0.2273 −0.2925 −0.1018 �2,· −0.0070 0.0048
(0.2107) (0.2435) (0.0575) (0.0003) (0.0001)

The estimated parameters of the KP matrix, the θP vector, and the� matrix are shown for the B-AFNS(2)
model. The associated estimated λ is 0.1260 (0.0039) with maturity measured in years. The numbers in
parentheses are estimated parameter standard deviations. The maximum log-likelihood value is 32,808.21.
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Table B4 Parameter estimates of the AFNS(3) model

KP KP
·,1 KP

·,2 KP
·,3 θP � �·,1 �·,2 �·,3

KP
1,· 2.0515 2.5376 −0.8283 0.0539 �1,· 0.0137 0 0

(1.1176) (1.3554) (0.3924) (0.1266) (0.0005)
KP

2,· −0.7631 −0.8852 0.3825 −0.0466 �2,· −0.0132 0.0026 0
(1.0967) (1.3327) (0.3831) (0.0987) (0.0005) (0.0001)

KP
3,· 1.5648 2.1032 0.4196 −0.0267 �3,· −0.0199 −0.0017 0.0147

(1.6314) (1.9929) (0.5450) (0.0098) (0.0009) (0.0004) (0.0003)

The estimated parameters of the KP matrix, the θP vector, and the � matrix are shown for the AFNS(3)
model. The associated estimated λ is 0.3918 (0.0044) with maturity measured in years. The numbers in
parentheses are estimated parameter standard deviations. The maximum log-likelihood value is 35,469.67.

Table B5 Parameter estimates of the B-AFNS(3) model

KP KP
·,1 KP

·,2 KP
·,3 θP � �·,1 �·,2 �·,3

KP
1,· 2.0140 3.0510 −1.0411 0.0040 �1,· 0.0211 0 0

(0.7362) (1.1116) (0.3695) (0.1434) (0.0006)
KP

2,· −0.8440 −1.3316 0.4768 0.0352 �2,· −0.0192 0.0040 0
(0.7016) (1.0417) (0.3244) (0.3557) (0.0006) (0.0001)

KP
3,· −1.9305 −3.4216 1.1847 0.1118 �3,· −0.0292 −0.0009 0.0177

(1.0397) (1.4122) (0.5008) (0.7828) (0.0009) (0.0006) (0.0004)

The estimated parameters of the KP matrix, the θP vector, and the� matrix are shown for the B-AFNS(3)
model. The associated estimated λ is 0.4896 (0.0043) with maturity measured in years. The numbers in
parentheses are estimated parameter standard deviations. The maximum log-likelihood value is 36,520.00.

corresponding parameters in the AFNS(2) models, but this is a common feature
when estimating flexible latent factor models such as ours.32
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