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The affine dynamic term structure model (DTSM) is the canonical empirical finance representation of
the yield curve. However, the possibility that DTSM estimates may be distorted by small-sample bias
has been largely ignored. We show that conventional estimates of DTSM coefficients are indeed severely
biased, and this bias results in misleading estimates of expected future short-term interest rates and of
long-maturity term premia. We provide a variety of bias-corrected estimates of affine DTSMs, for both
maximally flexible and overidentified specifications. Our estimates imply interest rate expectations and
term premia that are more plausible from a macrofinance perspective. This article has supplementary
material online.
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1. INTRODUCTION

The affine Gaussian dynamic term structure model (DTSM)
is the canonical empirical finance representation of the yield
curve, which is used to study a variety of questions about the in-
teractions of asset prices, risk premia, and economic variables.
One question of fundamental importance to both researchers
and policy makers is to what extent movements in long-term
interest rates reflect changes in expected future policy rates or
changes in term premia. The answer to this question depends
on the estimated dynamic system for the risk factors under-
lying yields, which, in affine DTSMs, is specified as a vector
autoregression (VAR). Because of the high persistence of inter-
est rates, maximum likelihood (ML) estimates of such models
likely suffer from serious small-sample bias. Namely, interest
rates will be spuriously estimated to be less persistent than they
really are. While this problem has been recognized in the liter-
ature, no study, to date, has attempted to obtain bias-corrected
estimates of a DTSM, quantify the extent of estimation bias,
or assess the implications of that bias for economic inference.
In this article, we provide a readily applicable methodology for
bias-corrected estimation of both maximally flexible (exactly
identified) and restricted (overidentified) affine DTSMs. Our es-
timates uncover significant bias in standard DTSM coefficient
estimates and show that accounting for this bias substantially
alters economic conclusions.

The bias in ML estimates of the VAR parameters in an affine
DTSM parallels the well-known bias in ordinary least squares
(OLS) estimates of autoregressive systems. Such estimates will
generally be biased toward a dynamic system that displays less
persistence than the true process. This bias is particularly severe
when the estimation sample is small and the dynamic process
is very persistent. Empirical DTSMs are invariably estimated
under just such conditions, with data samples that contain only

a limited number of interest rate cycles. Hence, the degree of
interest rate persistence is likely to be seriously underestimated.
Consequently, expectations of future short-term interest rates
will appear to revert too quickly to their unconditional mean,
resulting in spuriously stable estimates of risk-neutral rates.
Furthermore, the estimation bias that contaminates readings on
expected future short-term rates also distorts estimates of long-
maturity term premia.

While the qualitative implications of the small-sample DTSM
estimation bias are quite intuitive, the magnitude of the bias and
its impact on inference about expected short-rate paths and risk
premia have been unclear. The ML methods, typically used to es-
timate DTSMs, were intensive, “hands-on” procedures because
these models exhibited relatively flat likelihood surfaces with
many local optima, as documented, among others, by Kim and
Orphanides (2005), Hamilton and Wu (2012), and Christensen,
Diebold, and Rudebusch (2011). The computational burden of
estimation effectively precluded the application of simulation-
based bias correction methods. However, recent work by Joslin,
Singleton, and Zhu (2011) (henceforth JSZ) and Hamilton and
Wu (2012) (henceforth HW) has shown that OLS can be used to
solve a part of the estimation problem. We exploit these new
procedures to facilitate bias-corrected estimation of DTSMs
through repeated simulation and estimation. Specifically, we
adapt the two-step estimation approaches of JSZ and HW by
replacing the OLS estimates of the autoregressive system in
the first step by simulation-based bias-corrected estimates. We
then proceed with the second step of the estimation, which re-
covers the parameters determining the cross-sectional fit of the
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model, in the usual way. This new estimation approach is a key
methodological innovation of the article.

There are several different existing approaches to correct for
small-sample bias in estimates of a VAR, including analyti-
cal bias approximations and bootstrap bias correction. While
each of these could be applied to our present context, we use
an indirect inference estimator for bias correction, which finds
the data-generating process (DGP) parameters that lead to a
mean of the OLS estimator equal to the original OLS estimates
(Gourieroux, Renault, and Touzi 2000). This approach is closely
related to the median-unbiased estimators of Andrews (1993)
and Rudebusch (1992). One contribution of our article is to
provide a new algorithm, based on results from the stochastic
approximation literature, to quickly and reliably calculate the
bias-correcting indirect inference estimator.

We first apply our methodology for bias-corrected DTSM es-
timation to the maximally flexible DTSM that was estimated
in JSZ. In this setting, the ML estimates of the VAR param-
eters are exactly recovered by OLS. Using the authors’ same
model specifications and data samples, we quantify the bias in
the reported parameter estimates and describe the differences
in the empirical results when the parameters governing the fac-
tor dynamics are replaced with bias-corrected estimates. We
find a very large estimation bias in JSZ. That is, the conven-
tional estimates of JSZ imply a severe overestimation of the
speed of interest rate mean reversion. As a result, the decom-
position of long-term interest rates into expectations and risk
premium components differs in statistically and economically
significant ways between conventional ML and bias-corrected
estimates. Risk-neutral forward rates, that is, short-term interest
rate expectations, are substantially more volatile after correc-
tion for estimation bias, and they show a pronounced decrease
over the last 20 years, consistent with lower longer-run infla-
tion and interest rate expectations documented in the literature
(Kozicki and Tinsley 2001; Kim and Orphanides 2005; Wright
2011). Furthermore, bias correction leads to term premia that
are elevated around recessions and subdued during expansions,
consistent with much theoretical and empirical research that
supports countercyclical risk compensation.

In our second empirical application, we estimate a DTSM
with overidentifying restrictions. HW showed that any affine
DTSM—maximally flexible or overidentified—can be esti-
mated by first obtaining reduced-form parameters using OLS
and then calculating all structural parameters via minimum-chi-
squared estimation. Many estimated DTSMs impose parameter
restrictions to avoid overfitting and to facilitate numerical op-
timization of the likelihood function (examples include Ang
and Piazzesi 2003; Kim and Wright 2005; Joslin, Priebsch, and
Singleton 2010). Restrictions on risk pricing (Cochrane and
Piazzesi 2008; Joslin, Priebsch, and Singleton 2010; Bauer
2011) have an additional benefit: they exploit the no-arbitrage
condition, which ties the cross-sectional behavior of interest
rates to their dynamic evolution, to help pin down the estimates
of the parameters of the dynamic system. In this way, such re-
strictions could potentially reduce the bias in the estimates of
these parameters. However, we find that the bias in ML estimates
of a DTSM with risk price restrictions is large, indeed, similar
in magnitude to our results for the maximally flexible model.
Although this result may not generalize to all restricted models,

it shows that simply zeroing out some risk price parameters will
not necessarily eliminate estimation bias.

There are a number of articles in the literature that are related
to ours. Several studies attempt to indirectly reduce the bias in
DTSM estimates—using risk price restrictions (see above), sur-
vey data (Kim and Orphanides 2005; Kim and Wright 2005),
or near-cointegrated VAR specifications (Jardet, Monfort, and
Pegoraro 2011)—but do not quantify the bias nor provide evi-
dence as to how much it is reduced. Another group of articles has
performed simulation studies to show the magnitude of the bias
in DTSM estimates relative to some stipulated DGP (Ball and
Torous 1996; Duffee and Stanton 2004; Kim and Orphanides
2005). These studies demonstrate that small-sample bias can
be an issue using simulation studies, but do not quantify its
magnitude or assess its implications for models estimated on
real data. The most closely related is Phillips and Yu (2009),
which also performs bias-corrected estimation of asset pricing
models. This analysis parallels ours in that the authors also use
simulation-based bias correction and show the economic im-
plications of correcting for small-sample bias. However, their
focus differed from ours in that they aimed at reducing the bias
in prices of contingent claims, whereas we address a different
economic question, namely the implications of small-sample
bias on estimated policy expectations and nominal term premia.

Our article is structured as follows. Section 2 describes the
model, the econometric problems with conventional estimation,
and the intuition of our methodology for bias-corrected estima-
tion. In Section 3, we discuss OLS estimates of interest rate
VARs and the improvements from bias-corrected estimates. In
Section 4, we describe how to estimate maximally flexible mod-
els with bias correction, apply this methodology to the model
of JSZ, and discuss the statistical and economic implications.
We also perform a simulation study to systematically assess the
value of bias correction in such a context. In Section 5, we show
how to perform bias-corrected estimation for restricted models,
adapting the methodology of HW, and apply this approach to a
model with restrictions on the risk pricing. Section 6 concludes.

2. ESTIMATION OF AFFINE MODELS

In this section, we set up a standard affine Gaussian DTSM,
and describe the econometric issues, including small-sample
bias, that arise due to the persistence of interest rates. Then,
we discuss recent methodological advances and how they make
bias correction feasible.

2.1 Model Specification

The discrete-time affine Gaussian DTSM, the workhorse
model in the term structure literature since Ang and Piazzesi
(2003), has three key elements. First, a vector of N risk fac-
tors, Xt , follows a first-order Gaussian VAR under the objective
probability measure P:

Xt+1 = µ + �Xt + �εt+1, (1)

where εt ∼N (0, IN ) and � is lower triangular. Time t is mea-
sured in months throughout the article. Second, the short-term
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interest rate rt , is an affine function of the pricing factors:

rt = δ0 + δ′
1Xt . (2)

Third, the stochastic discount factor (SDF) that prices all assets
under the absence of arbitrage is of the essentially affine form
(Duffee 2002):

− log(Mt+1) = rt + 1

2
λ′

tλt + λ′
tεt+1,

where the N-dimensional vector of risk prices is affine in the
pricing factors,

λt = λ0 + λ1Xt ,

for N-vector λ0 and N × N matrix λ1. As a consequence of these
assumptions, a risk-neutral probability measure Q exists such
that the price of an m-period default-free zero coupon bond is
P m

t = E
Q
t (e−∑m−1

h=0 rt+h ), and under Q, the risk factors also follow
a Gaussian VAR,

Xt+1 = µQ + �QXt + �ε
Q
t+1. (3)

The prices of risk determine how the change of measure affects
the VAR parameters:

µQ = µ − �λ0, �Q = � − �λ1. (4)

Bond prices are exponentially affine functions of the pricing
factors:

P m
t = eAm+B′

mXt ,

with loadings Am = Am(µQ,�Q, δ0,δ1,�) and Bm =
Bm(�Q,δ1) that follow the recursions

Am+1 = Am + (µQ)′Bm + 1

2
B′

m��′Bm − δ0,

Bm+1 = (�Q)′Bm − δ1,

with starting values A0 = 0 and B0 = 0. Model-implied yields
are ym

t = −m−1 log P m
t = Am + B ′

mXt , with Am = −m−1Am

and Bm = −m−1Bm. Risk-neutral yields, the yields that would
prevail if investors were risk-neutral, can be calculated using

ỹm
t = Ãm + B̃′

mXt , Ãm = −m−1Am(µ,�, δ0,δ1,�),

B̃m = −m−1Bm(�, δ1).

Risk-neutral yields reflect policy expectations over the lifetime
of the bond, m−1 ∑m−1

h=0 Etrt+h, plus a time-constant convexity
term. The yield term premium is defined as the difference be-
tween actual and risk-neutral yields, ytpm

t = ym
t − ỹm

t . Model-
implied forward rates for loans starting at t + n and maturing
at t + m are given by f

n,m
t = (m − n)−1(log P n

t − log P m
t ) =

(m − n)−1(mym
t − nyn

t ). Risk-neutral forward rates f̃
n,m
t are cal-

culated, in an analogous fashion, from risk-neutral yields. The
forward term premium is defined as f tp

n,m
t = f

n,m
t − f̃

n,m
t .

The appeal of a DTSM is that all yields, forward rates, and
risk premia are functions of a small number of risk factors. Let
M be the number of yields in the data used for estimation. The
M-vector of model-implied yields is Yt = A + BXt , with A =
(Am1 , . . . , AmM

)′ and B = (Bm1 , . . . , BmM
)′. A low-dimensional

model will not have a perfect empirical fit for all yields, so
we specify observed yields to include a measurement error,
Ŷt = Yt + et . While measurement error can potentially have

serial correlation (Adrian, Crump, and Moench 2012; Hamilton
and Wu in press), we follow much of the literature and take et

to be an iid process.
As in JSZ and HW, we assume that N linear combinations

of yields are priced without error. Specifically, we take the first
three principal components of yields as risk factors. Denote by
W the 3 × M matrix that contains the eigenvectors correspond-
ing to the three largest eigenvalues of the covariance matrix of
Ŷt . By assumption, Xt = W Yt = WŶt . Generally, risk factors
can be unobserved factors (which are filtered from observed
variables), observables such as yields or macroeconomic vari-
ables, or any combination of unobserved and observable factors.
Our estimation method is applicable to cases with observable
and/or unobservable yield curve factors, as well as to macro-
finance DTSMs (Ang and Piazzesi 2003; Rudebusch and Wu
2008; Joslin, Priebsch, and Singleton 2010). The only assump-
tion that is necessary for our method to be applicable is that N
linear combinations of risk factors are priced without error.

One possible parameterization of the model is in terms of
γ = (µ,�,µQ,�Q, δ0,δ1,�), leaving aside the parameters
determining the measurement error distribution. Given γ , the
risk sensitivity parameters λ0 and λ1 follow from Equation (4).
Model identification requires normalizing restrictions (Dai and
Singleton 2000). For example, γ has 34 free elements in a three-
factor model, but only 22 parameters are identified, so at least
12 normalizing restrictions are necessary. If the model is ex-
actly identified, one speaks of a “maximally flexible” model, as
opposed to an overidentified model, in which additional restric-
tions are imposed.

2.2 Maximum Likelihood Estimation and
Small-Sample Bias

While it is conceptually straightforward to calculate the ML
estimator (MLE) of γ, this has been found to be very difficult
in practice. The list of studies that have documented such prob-
lems is long and includes Ang and Piazzesi (2003), Kim and
Orphanides (2005), Duffee (2011a), Christensen, Diebold, and
Rudebusch (2009, 2011), and Hamilton and Wu (2012). The first
issue is to numerically find the MLE, which is problematic since
the likelihood function is high dimensional, badly behaved, and
typically exhibits local optima (with different economic impli-
cations). The second issue is the considerable statistical uncer-
tainty around the point estimates of DTSM parameters (Kim
and Orphanides 2005; Rudebusch 2007; Bauer 2011). The third
issue, which is the focus of this article, is that the MLE suf-
fers from small-sample bias (Ball and Torous 1996; Duffee and
Stanton 2004; Kim and Orphanides 2005). All three of these
problems are related to the high persistence of interest rates,
which complicates the inference about the VAR parameters.
Intuitively, because interest rates revert to their unconditional
mean very slowly, a data sample will typically contain only
very few interest rate cycles, which makes it difficult to infer µ

and �. The likelihood surface is rather flat in certain dimensions
around its maximum; thus, numerical optimization is difficult
and statistical uncertainty is high. Furthermore, the severity of
the small-sample bias depends positively on the persistence of
process.
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The economic implications of small-sample bias are likely to
be important, because the VAR parameters determine the risk-
neutral rates and term premia. Since the bias causes the speed of
mean reversion to be overestimated, model-implied interest rate
forecasts will tend to be too close to their unconditional mean,
especially at long horizons. Therefore, risk-neutral rates will be
too stable, and too large a portion of the movements in nominal
interest rates will be attributed to movements in term premia.

2.3 Bias Correction for DTSMs

Simulation-based bias correction methods require repeated
sampling of new datasets and calculation of the estimator. For
this to be computationally feasible, the estimator needs to be
calculated quickly and reliably for each simulated dataset. In the
DTSM context, MLE has typically involved high computational
cost, with low reliability in terms of finding a global optimum,
which effectively precluded simulation-based bias correction.

However, two important recent advances in the DTSM lit-
erature substantially simplify the estimation of affine Gaussian
DTSMs. First, JSZ proved that in a maximally flexible model,
the MLE of µ and � can be obtained using OLS. Second, HW
showed that any affine Gaussian model can be estimated by first
estimating a reduced form of the model by OLS and then finding
the structural parameters by minimizing a chi-squared statistic.
Given these methodological innovations, there is no need to
maximize a high-dimensional, badly behaved likelihood func-
tion. Estimation can be performed by a consistent and efficient
two-stage estimation procedure, where the first stage consists of
OLS and the second stage involves finding the remaining (JSZ)
or the structural (HW) parameters, without minimal computa-
tional difficulties.

These methodological innovations make correction for small-
sample bias feasible, because of their use of linear regressions
to solve a part of the estimation problem. In both approaches,
a VAR system is estimated in the first stage, which is the place
where bias correction is needed. We propose to apply bias cor-
rection techniques to the estimation of the VAR parameters, and
to carry out the rest of the estimation procedure in the normal
fashion. This, in a nutshell, is the methodology that we will use
in this article.

Before detailing our approach in Sections 4 (for maximally
flexible models) and 5 (for overidentified models), we first dis-
cuss how to obtain bias-corrected estimates of VAR parameters,
as well as the particular features of the VARs in term structure
models.

3. BIAS CORRECTION FOR INTEREST RATE VARs

This section describes interest rate VARs, that is, VARs that
include interest rates or factors derived from interest rates, and
discusses small-sample OLS bias and bias correction in this
context.

3.1 Characteristic Features of Interest Rate VARs

The factors in a DTSM include either individual interest rates,
linear combinations of these, or latent factors that are filtered
from the yield curve, and hence will typically have similar

statistical properties as individual interest rates. The amount
of persistence displayed by both nominal and real interest rates
is extraordinarily high. First-order autocorrelation coefficients
are typically close to one, and unit root tests often do not reject
the null of a stochastic trend. However, economic arguments
strongly suggest that interest rates are stationary. A unit root
is implausible, since nominal interest rates generally do not
turn negative and remain within some limited range, and an
explosive root (exceeding one) is unreasonable since forecasts
would diverge. For these reasons, empirical DTSMs almost in-
variably assume stationarity by implicitly or explicitly imposing
the constraint that all roots of the factor VAR are less than one
in absolute value. In a frequentist setting, the parameter space is
restricted appropriately, while in a Bayesian framework (Ang,
Boivin, and Dong 2009; Bauer 2011), stationarity is incorpo-
rated in the prior. In this article, we assume that interest rates
are stationary.

The data samples used in the estimation of interest rate VARs
are typically rather small. Researchers often start their sam-
ples in the 1980s or later because of data availability or po-
tential structural breaks (e.g., Joslin, Priebsch, and Singleton
2010; Joslin, Singleton, and Zhu 2011; Wright 2011). Even if
one goes back to the 1960s (e.g., Cochrane and Piazzesi 2005;
Duffee 2011b), the sample can be considered rather small in
light of the high persistence of interest rates—there are only
few interest rate cycles, and uncertainty around the VAR pa-
rameters remains high. Notably, it does not matter whether one
samples at quarterly, monthly, weekly, or daily frequency: sam-
pling at a higher frequency increases not only the sample length
but also the persistence (Pierse and Snell 1995).

Researchers attempting to estimate DTSMs are thus invari-
ably faced with highly persistent risk factors and small available
data samples to infer the dynamic properties of the model.

3.2 Small-Sample Bias of OLS

Consider the VAR system in Equation (1). We focus our
exposition on a first-order VAR since the extension to higher-
order models is straightforward. We assume that the VAR is
stationary, that is, all the eigenvalues of � are less than one in
modulus. The parameters of interest are θ = vec(�). Denote the
true values by θ0. The MLE of θ can be obtained by applying
OLS to each equation of the system (Hamilton 1994, chap. 11.1).
Let θ̂T denote the OLS estimator, and θ̂ the estimates from a
particular sample.

Because of the presence of lagged endogenous variables, the
assumption of strict exogeneity is violated, and the OLS es-
timator is biased in finite samples, that is, E(θ̂T ) �= θ0. The
bias function bT (θ) = E(θ̂T ) − θ relates the bias of the OLS
estimator to the value of the data-generating θ. Because θ̂T

is distributionally invariant with respect to µ and �, the bias
function depends only on θ and not on µ or �—the proof
of distributional invariance for the univariate case in Andrews
(1993) naturally extends to VAR models. The bias in θ̂T is more
severe, the smaller the available sample and the more persistent
the process is (e.g., see Nicholls and Pope 1988). Hence, for
interest rate VARs, the bias is potentially sizeable. The conse-
quence is that OLS tends to underestimate the persistence of the
system, as measured, for example, by the largest eigenvalue of
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� or by the half-life of shocks. In that case, forecasts revert to
the unconditional mean too quickly.

In principle, one can alternatively define bias using the me-
dian as the relevant central tendency of an estimator. Some au-
thors, including Andrews (1993) and Rudebusch (1992), have
argued that median-unbiased estimators have useful impartial-
ity properties, given that the distribution of the OLS estimator
can be highly skewed in autoregressive models for persistent
processes. However, for a vector-valued random variable, the
median is not uniquely defined, because orderings of multi-
variate observations are not unique. One possible definition is
to use the element-by-element median as in Rudebusch (1992),
and the working paper version of this article (Bauer, Rudebusch,
and Wu 2012) includes estimation results based on correcting
for median bias defined in this way—they are very similar to the
results presented here. We focus on mean bias, since its statisti-
cal foundation is more sound in the context of inference about
a vector-valued parameter.

3.3 Methods for Bias Correction

The aim of all bias correction methods is to estimate the
value of the bias function, that is, bT (θ0). We now discuss
alternative analytical and simulation-based approaches for this
purpose.

3.3.1 Analytical Bias Approximation. The statistical lit-
erature has developed analytical approximations for the mean
bias in univariate autoregressions (Kendall 1954; Marriott and
Pope 1954; Stine and Shaman 1989) and in VARs (Nicholls and
Pope 1988; Pope 1990), based on approximations of the small-
sample distribution of the OLS estimator. These closed-form
solutions are fast and easy to calculate, and are accurate up to
first order. They have been used for obtaining more reliable VAR
impulse responses by Kilian (1998a, 2011), and in finance appli-
cations by Amihud, Hurvich, and Wang (2009) and Engsted and
Pedersen (2012), among others.

3.3.2 Bootstrap Bias Correction. Simulation-based bias
correction methods rely on the bootstrap to estimate the bias.
Data are simulated using a (distribution-free) residual bootstrap,
taking the OLS estimates as the data-generating parameters, and
the OLS estimator is calculated for each simulated data sam-
ple. Comparing the mean of these estimates with θ̂ provides
an estimate of bT (θ̂), which approximates the bias at the true
data-generating parameters, bT (θ0). Hence, bootstrap bias cor-
rection removes first-order bias as does analytical bias correc-
tion, and both methods are asymptotically equivalent. Applica-
tions in time series econometrics include Kilian (1998b, 1999).
Prominent examples of the numerous applications in finance
are Phillips and Yu (2009) and Tang and Chen (2009). For a
detailed description of bootstrap bias correction, see the online
Appendix A.

3.3.3 Indirect Inference. Analytical and bootstrap bias
correction estimate the bias function at θ̂, whereas the true
bias is equal to the value of the bias function at θ0. The fact
that these generally differ motivates a more refined bias correc-
tion procedure. For removing higher-order bias and improving
accuracy further, one possibility is to iterate on the bootstrap
bias correction, as suggested by Hall (1992). However, the

computational burden of this “iterated bootstrap” quickly be-
comes prohibitively costly.

An alternative is to choose the value of θ by inverting the
mapping from DGP parameters to the mean of the OLS esti-
mator. In other words, one picks that θ which, if taken as the
data-generating parameter vector, leads to a mean of the OLS
estimator equal to θ̂. This bias correction method removes first-
and higher-order bias. The resulting estimator is a special case
of the indirect inference estimator of Gourieroux, Monfort, and
Renault (1993), as detailed in Gourieroux, Renault, and Touzi
(2000). It is also closely related to the median-unbiased estima-
tors of Andrews (1993) and Rudebusch (1992).

Calculation of this estimator requires the inversion of the un-
known mapping from DGP parameters to the mean of the OLS
estimator. The residual bootstrap provides measurements of this
mapping for given values of θ. Since the use of the bootstrap
introduces a stochastic element, one cannot use conventional
numerical root-finding methods. However, the stochastic ap-
proximation literature has developed algorithms to find the root
of functions that are measured with error. We adapt an existing
algorithm to our present context, which allows us to efficiently
and reliably calculate our bias-corrected estimators. The idea
behind the algorithm is the following: For each iteration, sim-
ulate a small set of bootstrap samples using some “trial” DGP
parameters, and calculate the mean of the OLS estimator and the
distance to the target (the OLS estimates in the original data).
In the following iteration, adjust the DGP parameters based on
this distance. After a fixed number of iterations, take the aver-
age of the DGP parameters over all iterations, discarding some
initial values. This average has desirable convergence properties
and will be close to the true solution. For the formal definition
of our bias-corrected estimator and for a detailed description
of the algorithm and underlying assumptions, refer to the on-
line Appendix B. While indirect inference estimators are well
understood theoretically and have been applied successfully in
practice, they are often difficult to calculate. Our algorithmic
implementation is generally applicable and can be used to cal-
culate other indirect inference estimators.

In the online Appendix C, we compare alternative bias
correction methods for VAR estimation with OLS and with
each other, and show that our indirect inference approach
performs well.

3.4 Eigenvalue Restrictions

We assume stationarity of the VAR; hence, we need to ensure
that estimates of � have eigenvalues that are less than one in
modulus, that is, the VAR has only stationary roots. In the con-
text of bias correction, this restriction is particularly important,
because bias-corrected VAR estimates exhibit explosive roots
much more frequently than OLS estimates (as is evident in our
simulation studies). In a DTSM, one might impose the tighter
restriction that the largest eigenvalue of � does not exceed the
largest eigenvalue of �Q, to ensure that policy rate forecasts are
no more volatile than forward rates. Either way, it will gener-
ally be necessary to impose restrictions on the set of possible
eigenvalues.

In this article, we impose the restriction that bias-corrected
estimates are stationary using the stationarity adjustment

D
ow

nl
oa

de
d 

by
 [

 ]
 a

t 1
6:

06
 2

3 
Ju

ly
 2

01
2 



Bauer, Rudebusch, and Wu: Correcting Estimation Bias in DTSM 459

suggested in Kilian (1998b). If the bias-corrected estimates have
explosive roots, the bias estimate is shrunk toward zero until the
restriction is satisfied. This procedure is simple, fast, and effec-
tive. It is also flexible: We can impose any restriction on the
largest eigenvalue of �, as long as the OLS estimates satisfy
this restriction.

4. ESTIMATION OF MAXIMALLY FLEXIBLE MODELS

In this section, we describe our methodology to obtain bias-
corrected estimates of maximally flexible models. We apply this
approach to the empirical setting of JSZ, quantify the small-
sample bias in their model estimates, and assess the economic
implications of bias correction. Although the approach that we
develop in Section 5 is more general and could be applied here,
adapting the estimation framework of JSZ has two advantages.
First, we start from a well-understood benchmark, namely the
ML estimates of the affine model parameters. Second, our nu-
merical results are directly comparable with those of JSZ.

4.1 Estimation Methodology

We assume that there are no overidentifying restrictions and,
as mentioned above, that N linear combinations of yields are ex-
actly priced by the model. Under these assumptions, any affine
Gaussian DTSM is equivalent to one where the pricing factors
Xt are taken to be those linear combinations of yields. The MLE
can be obtained by first estimating the VAR parameters µ and
� using OLS, and then maximizing the likelihood function for
given values of µ and � (as shown by JSZ). This suggests a
natural way to obtain bias-corrected estimates of the DTSM
parameters: first obtain bias-corrected estimates of the VAR pa-
rameters, and then proceed with the estimation of the remaining
parameters as usual. This, in a nutshell, is the approach we
propose here.

The normalization suggested by JSZ parameterizes the model
in terms of (µ,�,�, rQ

∞,λQ), where rQ
∞ is the risk-neutral un-

conditional mean of the short-term interest and the N-vector λQ

contains the eigenvalues of �Q. What characterizes this nor-
malization is that (1) the model is parameterized in terms of
physical dynamics and risk-neutral dynamics, and (2) all the
normalizing restrictions are imposed on the risk-neutral dynam-
ics. It is particularly useful because of the separation result that
follows: the joint likelihood function of observed yields can be
written as the product of (1) the “P-likelihood,” the conditional
likelihood of Xt , which depends only on (µ,�,�), and (2) the
“Q-likelihood,” the conditional likelihood of the yields, which
depends only on (rQ

∞,λQ,�) and the parameters for the mea-
surement errors. Because of this separation, the values of (µ,�)
that maximize the joint likelihood function are the same as the
ones that maximize the P-likelihood, namely the OLS estimates.
This gives rise to the simple two-step estimation procedure sug-
gested by JSZ.

The OLS estimates of the VAR parameters, denoted by
(µ̂, �̂), suffer from the small-sample bias that plagues all least-
square estimates of autoregressive systems. To deal with this
problem, we obtain bias-corrected estimates, denoted by (µ̃,
�̃). Here, we focus on the indirect inference estimator described
above (using 6000 iterations, of which we discard the first 1000,

with 50 bootstrap samples in each iteration and an adjustment
parameter αi = 0.5). We present results for analytical and boot-
strap bias correction in the online Appendix D. Because of the
JSZ separation result, our first-step estimates are independent of
the parameter values that, in the second step, maximize the joint
likelihood function. Differently put, we do not have to worry in
the first step about cross-sectional fit. We estimate the remain-
ing parameters by maximizing the joint likelihood function over
(rQ

∞,λQ,�), fixing the values of µ and � at µ̃ and �̃. This pro-
cedure will take care of the small-sample estimation bias, while
achieving similar cross-sectional fit as MLE.

To calculate standard errors for µ̃ and �̃, we use the con-
ventional asymptotic approximation, and simply plug the bias-
corrected point estimates into the usual formula for OLS stan-
dard errors. Alternative approaches using bootstrap simulation
are possible, but for the present context, we deem this pragmatic
solution sufficient. For the estimates of (rQ

∞,λQ,�), we calcu-
late quasi-MLE standard errors, approximating the gradient and
Hessian of the likelihood function numerically.

4.2 Data and Parameter Estimates

We first replicate the estimates of JSZ and then assess the
implications of bias correction. We focus on their “RPC” speci-
fication, in which the pricing factors Xt are the first three princi-
pal components of yields and �Q has distinct real eigenvalues.
There are no overidentifying restrictions; thus, there are 22 free
parameters, not counting measurement error variances. The free
parameters are µ (3), � (9), rQ

∞ (1), λQ (3), and � (6). The
monthly dataset of zero-coupon Treasury yields from January
1990 to December 2007, with yield maturities of 6 months and 1,
2, 3, 5, 7, and 10 years, is available on Ken Singleton’s website.

To obtain the MLE, we follow the estimation procedure of
JSZ, and we denote this set of estimates by “OLS.” Then, we
apply bias correction, denoting the resulting estimates by “BC.”
Table 1 shows point estimates and standard errors for the DTSM
parameters. The OLS estimates in the left panel exactly corre-
spond to the ones reported in JSZ. The bias-corrected estimates
are reported in the right panel. Because of the JSZ separation
result, the estimated risk-neutral dynamics and the estimated �

are very similar across the two sets of estimates—slight differ-
ences stem from the fact that � enters both the P-likelihood and
the Q-likelihood, wherefore different values of µ and � lead
to different optimal values of (rQ,λQ,�) in the second stage.
The cross-sectional fit is also basically identical, with a root
mean squared fitting error of about six basis points. The esti-
mated VAR dynamics are however substantially different with
and without bias correction.

4.3 Economic Implications of Bias Correction

To assess the economic implications of bias-corrected DTSM
estimates, we first consider measures of persistence of the es-
timated VAR, shown in the top panel of Table 2. The first row
reports the maximum absolute eigenvalue of the estimated �,
which increases significantly when bias correction is applied.
The statistics in the second and third rows are based on the
impulse response function (IRF) of the level factor (the first
principal component) to a level shock. The second row shows
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Table 1. Maximally flexible DTSM—parameter estimates

OLS BC

1200µ −0.5440 −0.1263 0.0700 −0.3290 −0.2321 0.0738
(0.2330) (0.0925) (0.0398) (0.2358) (0.0931) (0.0401)

� 0.9788 0.0133 0.4362 0.9987 0.0006 0.4721
(0.0111) (0.0392) (0.2127) (0.0112) (0.0397) (0.2152)
0.0027 0.9737 0.3532 −0.0020 0.9926 0.3462

(0.0044) (0.0156) (0.0844) (0.0044) (0.0019) (0.0366)
−0.0025 −0.0023 0.8537 0.0001 0.0021 0.8813
(0.0019) (0.0067) (0.0364) (0.0019) (0.0068) (0.0366)

|eig(�)| 0.9678 0.9678 0.8706 0.9991 0.9991 0.8744

1200rQ
∞ 8.6055 8.6568

(0.6590) (0.6537)
λQ 0.9976 0.9519 0.9287 0.9976 0.9518 0.0287

(0.0004) (0.0082) (0.0145) (0.0004) (0.0082) (0.0145)

1200� 0.6365 0 0 0.6442 0 0
(0.0324) (0.0317)

−0.1453 0.2097 0 −0.1468 0.2107 0
(0.0216) (0.0143) (0.0216) (0.0146)
0.0630 −0.0117 0.0867 0.0635 −0.0113 0.0873

(0.0075) (0.0072) (0.0048) (0.0076) (0.0076) (0.0045)

NOTE: Parameter estimates for the DTSM as in JSZ. Left panel shows OLS/ML estimates, and right panel shows bias-corrected (BC) estimates.

the half-life, that is, the horizon at which the IRF falls below 0.5,
calculated as in Kilian and Zha (2002). The half-life is 2 years
for OLS, and about 22 years for BC. The third row reports
the value of the IRF at the 5-year horizon, which is increased
through bias correction by a factor of about 5–6. The results
here show that OLS greatly understates the persistence of the
dynamic system, since bias correction substantially increases
the estimated persistence.

We now turn to risk-neutral rates and nominal term premia,
focusing on a decomposition of the 1-month forward rate for a
loan maturing in 4 years, that is, f

47,48
t . The last three rows of

Table 2 show standard deviations of the model-implied forward
rate and of its risk-neutral and term premium components. The
volatility of the forward rate itself is the same across estimates,
since the model fit is similar. The volatility of the risk-neutral
forward rate is higher for the bias-corrected estimates than for
OLS by a factor of about 3–4. The slower mean reversion leads
to much more volatile risk-neutral rates. The mean BC esti-
mates lead to a particularly high volatility of risk-neutral rates.
The volatility of the forward term premium is similar across

Table 2. Maximally flexible DTSM—summary statistics

OLS BC

max(eig(�)) 0.9678 0.9991
Half-life 24.0 265.0
IRF at 5 years 0.16 0.93

σ (f 47,48
t ) 1.392 1.392

σ (f̃ 47,48
t ) 0.388 1.635

σ (f tp
47,48
t ) 1.301 1.656

NOTE: Summary statistics for OLS and bias-corrected (BC) estimates of the DTSM as in
JSZ. First row: maximum eigenvalue of the estimated �. Second and third rows: half-life
and value of the IRF at the 5-year horizon for the response of the level factor to a level shock.
Last three rows show sample standard deviations of the fitted 47- to 48-month forward rates
and of the corresponding risk-neutral forward rates and forward term premia.

estimates, with slightly more variability after bias correction.
Figure 1 shows the alternative estimates of the risk-neutral for-
ward rate in the top panel and the estimated forward term premia
in the bottom panel. The differences are rather striking. The risk-
neutral forward rate resulting from OLS estimates displays little
variation, and the associated term premium closely mirrors the
movements of the forward rate. The secular decline in the for-
ward rate is attributed to the term premium, which does not show
any discernible cyclical pattern. In contrast, the risk-neutral for-
ward rates implied by bias-corrected estimates vary much more
over time and account for a considerable portion of the secu-
lar decline in the forward rate. There is a pronounced cyclical
pattern for both the risk-neutral rate and the term premium.

From a macrofinance perspective, the decomposition im-
plied by bias-corrected estimates seems more plausible. The
secular decline in risk-neutral rates is consistent with results
from survey-based interest rate forecasts (Kim and Orphanides
2005) and far-ahead inflation expectations (Kozicki and Tins-
ley 2001; Wright 2011), which have drifted downward over the
last 20 years. The bias-corrected term premium estimates dis-
play a pronounced countercyclical pattern, rising notably dur-
ing recessions. Most macroeconomists believe that risk premia
vary significantly at the business cycle frequency and behave in
such a countercyclical fashion, given theoretical work such as
Campbell and Cochrane (1999) and Wachter (2006) as well as
empirical evidence from Harvey (1989) to Lustig, Roussanov,
and Verdelhan (2010). In contrast, the OLS-estimated term pre-
mium is very stable and, if anything, appears to decline a bit
during economic recessions.

This empirical application shows that the small-sample bias
in a typical maximally flexible estimated DTSM, as the one
in JSZ, is sizable and economically significant. Taking ac-
count of this bias leads to risk-neutral rates and term premia
that are significantly different from the ones implied by MLE.
Specifically, bias-corrected policy expectations show higher and
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Figure 1. Maximally flexible DTSM—decomposition of forward rates. One-month forward rates with 4 years maturity, decomposed into
risk-neutral forward rates and forward term premia using the affine Gaussian DTSM of JSZ. Sample: monthly observations from January 1990 to
December 2007. Gray-shaded areas correspond to National Bureau of Economic Research (NBER) recessions. The online version of this figure
is in color.

more plausible variation and contribute, to some extent, to the
secular decline in long-term interest rates. Bias-corrected term
premium estimates show a very pronounced countercyclical pat-
tern, whereas conventional term premium estimates just parallel
movements in long-term interest rates.

4.4 Monte Carlo Study

Bias correction is designed to provide more accurate estimates
of the model parameters, but the main objects of interest, risk-
neutral rates and term premia, are highly nonlinear functions
of these parameters. We use a Monte Carlo study to investi-
gate whether bias-corrected estimation of a maximally flexible
DTSM improves inference about the persistence of interest rates
and about expected short-term interest rates and term premia. In
addition, we evaluate how well out-of-sample forecasts based on
bias-corrected estimates perform in comparison with alternative
forecast methods.

We simulate 1000 yield datasets using the model specifica-
tion described above and the bias-corrected parameter estimates

as the DGP. First, we simulate time series for Xt , with T +
H = 216 + 60 = 276 observations from the VAR, drawing the
starting values from their stationary distribution. Here, T is the
sample used for estimation and H is the longest forecast hori-
zon. Then, model-implied yields are calculated using the yield
loadings for given DGP parameters (rQ

∞,λQ,�), and taking W
as corresponding to the principal components in the original
data. We add independent Gaussian measurement errors with a
standard deviation of six basis points.

For each simulated dataset, we perform the same estimation
procedures as above, obtaining OLS and BC estimates using
the first T observations. Here, we run our estimation algorithm
for 1500 iterations, discarding the first 500, using five bootstrap
replications in each iteration and an adjustment parameter αi =
0.1. For bias-corrected estimates that have explosive roots, we
apply the stationarity adjustment. In those cases where even the
OLS estimates are explosive, we shrink the estimated � matrix
toward zero until it is stationary, and only then proceed to obtain
bias-corrected estimates. Because of the very high persistence of
the DGP process, bias-corrected estimates often imply explosive
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Table 3. DTSM Monte Carlo study—summary statistics

Mean Median

DGP OLS BC DGP OLS BC

max(eig(�)) 0.9991 0.9875 0.9981 0.9991 0.9906 0.9996
Half-life 265.0 54.4 111.2 265.0 25.0 39.0
IRF at 5 years 0.93 0.27 0.53 0.93 0.21 0.55
σ (f 47,48

t ) 2.14 2.15 2.15 1.84 1.85 1.85
σ (f̃ 47,48

t ) 2.76 1.87 2.60 2.47 1.49 2.36
σ (f tp

47,48
t ) 3.00 2.60 2.99 2.65 2.24 2.70

RMSE(f 47,48
t ) 0.02 0.02 0.01 0.01

RMSE(f̃ 47,48
t ) 1.79 1.69 1.67 1.56

RMSE(f tp
47,48
t ) 1.79 1.70 1.70 1.56

NOTE: Summary statistics for persistence, variability, and accuracy of estimated
rates and premia in DTSM Monte Carlo study. First three rows show true values
(DGP) and means/medians of estimated values for the largest root of �, the half-life
in months (across estimates that have a half-life of less than 40 years), and the value
of the IRF at the 5-year horizon for response of the first risk factor to own shocks.
Rows four to six show means/medians of sample standard deviations of forward rates,
risk-neutral forward rates, and forward premia. Last three rows show means/medians
of RMSEs for estimated rates and premia. Volatilities and RMSEs are in annualized
percentage points. For details refer to text.

VAR dynamics—the frequency of explosive eigenvalues before
the stationarity adjustment is 74.7%. The OLS estimates have
an explosive root in 13.9% of the replications.

The model parameters governing the VAR system are esti-
mated with a substantial bias when using OLS, while BC esti-
mates display a much smaller bias, as expected. The remaining
parameters of the DTSM are estimated with similar accuracy
in either case. As expected, Q-measure parameters are pinned
down with high precision by the data, while inference about P-
measure parameters is troublesome. The estimates of the model
parameters are presented and discussed further in the online
Appendix E.

Table 3 summarizes how accurate alternative estimates re-
cover the main objects of interest. The first three rows show mea-
sures of persistence for the true parameters (DGP) and means
and medians of these measures for the estimated parameters.
As before, we calculate the largest absolute eigenvalue of �,
the half-life, and the value of the IRF at the 5-year horizon for
the response of the level factor to own shocks. For the half-life,
means/medians are calculated only across those replications for
which the estimates imply a half-life of less than 40 years, the
cutoff for our half-life calculation (Kilian and Zha 2002).

As expected, the persistence of the VAR is significantly un-
derestimated by OLS, with central tendencies of the estimated
persistence measures significantly below their true value. Bias-
corrected estimation leads to much better results: it does not
perfectly recover the true persistence, but the estimated persis-
tence is higher than that for OLS and closer to the true model.

How accurately do the estimates capture policy expectations
and term premia? We decompose the 4-year forward rate into
expectations and risk premium components, for the true DGP
parameters and for each set of estimated parameters. Rows four
to six of Table 3 show the means and medians across replica-
tions of sample standard deviations of forward rates and the
components, in annualized percentage points. Volatilities of
forward rates are similar for the DGP and for the estimated
series because the models generally fit the cross section of

interest rates well. For risk-neutral rates and term premia,
there are substantial differences. Due to the downward bias
in the estimated persistence, OLS implies risk-neutral rates that
are too stable, with volatilities that are significantly below those
of the true risk-neutral rates. On the other hand, bias-corrected
estimation leads to estimated risk-neutral rates that are about
equally as volatile as for the true model. The volatility of policy
expectations is captured better by bias-corrected than conven-
tional estimates. For term premia, the picture is less clear, with
OLS premia being slightly too stable and bias-corrected premia
too volatile.

To measure the accuracy of estimated rates and premia in re-
lation to the series implied by the true model, we calculate root
mean squared errors (RMSEs), in percentage points, for each
replication. The last three rows of Table 3 show the means and
medians of these RMSEs. Forward rates are naturally fit very
accurately, with an average error of about one basis point. Risk-
neutral forward rates and forward premia are estimated much
more imprecisely, because they depend on the imprecisely mea-
sured VAR parameters. Their RMSEs are between 1.2 and 1.4
percentage points. Importantly, the bias-corrected estimates im-
ply lower RMSEs than OLS, indicating that the decomposition
of long rates based on these estimates more closely corresponds
to the true decomposition.

To assess forecast accuracy, we predict the future 6-month
yield for horizons of 1–5 years. We consider random walk (RW)
forecasts and model-based forecasts using the OLS and BC esti-
mates. The predictions are made at time T in each Monte Carlo
replication, the forecast errors for each horizon are recorded,
and the root mean square forecast errors are calculated across
the 1000 Monte Carlo replications. This simulation-based fore-
cast exercise reveals the systematic performance across many
samples. In contrast, an assessment of forecast accuracy in a spe-
cific interest rate dataset would suffer from the small available
sample sizes and the results would be highly sample dependent.
Table 4 shows the results. Naturally, RW forecasts are hard to
beat, a typical result in this literature, and model-based fore-
casts mostly have larger RMSEs. However, forecasts based on
the BC estimates are more accurate at all horizons than the OLS
forecasts.

The evidence from our simulation study clearly demon-
strates the value of bias-corrected DTSM estimation for infer-
ence about expectations and risk premia. Both for in-sample
estimation of risk-neutral rates and term premia, and for
out-of-sample forecasts, the BC estimation displays higher ac-
curacy than conventional MLE/OLS estimation.

Table 4. DTSM Monte Carlo study—out-of-sample forecast accuracy

Horizon RW OLS BC

1 year 1.31 1.33 1.24
2 years 2.11 2.42 2.23
3 years 2.77 3.31 3.03
4 years 3.26 4.00 3.68
5 years 3.79 4.68 4.33

NOTE: RMSEs for out-of-sample forecasts of the 6-month yield, across Monte Carlo
replications. Competing models: RW, as well as OLS and BC estimates of affine Gaussian
DTSM. For details refer to text.
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5. ESTIMATION OF OVERIDENTIFIED MODELS

We now turn to models that include overidentifying restric-
tions. After first discussing the type of restrictions that are
typically imposed on DTSMs, we propose a bias-corrected
estimation procedure for such models. Then, we examine the
consequences of bias-corrected estimation for a model with re-
strictions on risk prices that are common in the DTSM literature.

5.1 Restrictions in DTSMs

Most studies in the DTSM literature impose overidentify-
ing parameter restrictions—either on the dynamic system (Ang
and Piazzesi 2003; Kim and Orphanides 2005; Duffee 2011a),
on the Q-measure parameters (Christensen, Diebold, and
Rudebusch 2011), or on the risk sensitivity parameters λ0 and λ1

(Ang and Piazzesi 2003; Kim and Orphanides 2005; Cochrane
and Piazzesi 2008; Joslin, Priebsch, and Singleton 2010; Bauer
2011)—with the purpose of avoiding overfit, increasing pre-
cision, or facilitating computation. Particularly appealing are
restrictions on the risk pricing, that is, on (λ0,λ1). Intuitively,
under such restrictions, the cross-sectional information helps to
pin down the estimates of the VAR parameters. In this way,
the no-arbitrage assumption helps overcome problems of small-
sample bias and statistical uncertainty. This point was made
forcefully by Cochrane and Piazzesi (2008) and has since been
used effectively in other studies (Joslin, Priebsch, and Singleton
2010; Bauer 2011).

In the following, we will present a methodology for bias-
corrected estimation of restricted DTSMs. This makes it possi-
ble to assess the impact of risk price restrictions on small-sample
bias. Since a complete analysis of the interaction between bias
and various possible risk price restrictions is beyond the scope
of this article, we focus on one restricted model with the type of
restrictions that are representative in the literature.

5.2 Estimation Methodology

For models with overidentifying restrictions, the estimation
methods discussed in Section 4 are not applicable. Here, we in-
troduce an alternative approach based on the framework of HW.
They showed that for any affine Gaussian DTSM that exactly
prices N linear combinations of yields, all the information in the
data can be summarized by the parameters of a reduced-form
system—a VAR for the exactly priced linear combinations of
yields Y1

t and a contemporaneous regression equation for the
linear combinations of yields Y2

t that are priced with error,

Y1
t = µ1 + �1Y1

t−1 + u1
t , (5)

Y2
t = µ2 + �2Y1

t + u2
t . (6)

We denote var(u1
t ) = �1 and var(u2

t ) = �2 (taken to be diag-
onal). Since we take Y1

t = WYt as the risk factors, we have
Y1

t = Xt , µ1 = µ, �1 = �, u1
t = �εt , and �1 = ��′. We also

have Y2
t = Ŷt .

HW suggested an efficient two-step procedure for DTSM
estimation. In the first step, one obtains estimates of the reduced-
form parameters by OLS. In the second step, the structural model
parameters are found via minimum-chi-squared estimation: a

chi-squared statistic measures the (weighted) distance between
the estimates of the reduced-form parameters and the values
implied by the structural parameters, and it is minimized via
numerical optimization.

For bias-corrected estimation, we replace the OLS estimates
of the VAR in Equation (5) with the bias-corrected parameter
estimates. For the contemporaneous regression in Equation (6),
OLS is unbiased, so bias correction is not necessary. Having ob-
tained bias-corrected estimates of the reduced-form parameters,
we perform the second stage of the estimation as before, mini-
mizing the chi-squared distance statistic. To calculate standard
errors for the bias-corrected estimates, we use HW’s asymp-
totic approximation and simply plug the bias-corrected point
estimates into the relevant formula.

5.3 Data and Parameter Estimates

For estimation, we use the zero-coupon yield data described
by Gürkaynak, Sack, and Wright (2007). The data are available
on the Federal Reserve Board’s website. We use end-of-month
observations from January 1985 to December 2011 on yields
with maturities of 1, 2, 3, 5, 7, and 10 years.

For the identifying restrictions, we again use the JSZ normal-
ization. Since we want to impose restrictions on risk prices, the
model is parameterized in terms of (�λ0,�λ1,�, rQ

∞,λQ) plus
the measurement error variance �2, which is, as usual, assumed
to be diagonal. We focus on (�λ0,�λ1) instead of (λ0,λ1),
since we do not want our inference to depend on the arbitrary
factorization of the covariance matrix of the VAR innovations
(Joslin, Priebsch, and Singleton 2010).

To decide which restrictions to impose, we first estimate a
maximally flexible model without bias correction. Parameter
estimates and standard errors are obtained exactly as in HW.
This set of estimates will be called “OLS-UR” (for unrestricted).
Then, we set to zero the five elements of �λ1 with t statistics
less than one. While this is an ad hoc choice of restrictions that
ignores issues of the joint significance of parameters and model
uncertainty, it is a common practice in the DTSM literature—
Bauer (2011) provided a framework to systematically deal with
DTSM model selection and model uncertainty. This restricted
specification is then estimated in the conventional way (“OLS-
R”) as well as using bias correction (“BC-R”).

In Table 5, we report parameter estimates and standard errors
for (�λ0,�λ1, r

Q
∞,λQ,�). The Q-parameters are very similar

across all three sets of estimates, since these are pinned down
by the cross section of yields and are largely unaffected by
the restrictions. However, the risk price parameters generally
change between OLS-R and BC-R. Evidently, even for this
tightly restricted model, bias correction has a notable impact on
the magnitudes of the estimated risk sensitivities.

5.4 Economic Implications of Bias Correction

We decompose 5- to 10-year forward rates into risk-neutral
rate and term premium components. The top panel of Figure 2
displays alternative estimates of the risk-neutral forward rate,
while the bottom panel shows estimates of the forward term pre-
mium. Both panels also include the actual forward rate. Table 6
presents the summary statistics related to the persistence of the
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Table 5. Restricted DTSM—parameter estimates

OLS-UR OLS-R BC-R

1200�λ0 0.3146 0.1159 0.0790 0.3329 0.1015 0.0652 0.3274 0.1006 0.0537
(0.2293) (0.0708) (0.0260) (0.1240) (0.0512) (0.0186) (0.1250) (0.0513) (0.0187)

�λ1 −0.0116 −0.1303 −0.0340 −0.0161 −0.1229 0 −0.0092 −0.1271 0
(0.0074) (0.0439) (0.2773) (0.0060) (0.0358) (0.0060) (0.0361)
0.0012 −0.0113 −0.1577 0 0 −0.1552 0 0 −0.1420

(0.0023) (0.0136) (0.0856) (0.0789) (0.0792)
−0.0008 −0.0021 −0.1043 0 0 −0.1065 0 0 −0.0886
(0.0008) (0.0050) (0.0315) (0.0287) (0.0288)

1200rQ 15.0635 15.0609 15.1111
(0.5418) (0.5420) (0.5456)

λQ 0.9976 0.9488 0.9563 0.9976 0.9490 0.9561 0.9976 0.9491 0.9561
(0.0001) (0.0072) (0.0058) (0.0001) (0.0076) (0.0062) (0.0001) (0.0077) (0.0063)

1200� 0.7264 0 0 0.7261 0 0 0.7327 0 0
(0.0284) (0.0284) (0.0287)
0.0982 0.2125 0 0.0981 0.2125 0 0.0990 0.2132 0

(0.0117) (0.0078) (0.0117) (0.0078) (0.0117) (0.0079)
−0.0291 0.0211 0.0728 −0.0291 0.0211 0.0728 −0.0292 0.0212 0.0729
(0.0044) (0.0040) (0.0029) (0.0044) (0.0040) (0.0029) (0.0044) (0.0040) (0.0029)

NOTE: Conventional parameter estimates for maximally flexible model specification (OLS-UR), as well as conventional (OLS-R) and bias-corrected (BC-R) estimates of the model with
zero restrictions on risk price parameters.

estimated process, as well as sample standard deviations for the
forward rate and its components.

Imposing the restrictions has small effects on the persistence
of the estimated process and on the decomposition of long rates.
The two series corresponding to OLS-UR and OLS-R in each
panel are very close to each other. A look at the summary statis-
tics reveals that the restrictions make the risk-neutral forward
rate slightly less volatile and the forward term premium slightly
more volatile. The persistence measures indicate a slightly faster
speed of mean reversion under the risk price restrictions. Over-
all, the impact of imposing the five zero restrictions on �λ1

does not change the implications of the model in economically
significant ways.

Bias correcting the DTSM estimates has important economic
consequences. The persistence increases significantly, which
leads to more variable risk-neutral forward rates. The esti-
mated forward term premium becomes slightly more volatile for
BC-R than for OLS-R. Overall, the observations here parallel
the ones in the previous section for the JSZ data and model spec-
ification. The downward trend in forward rates is attributed to
term premia alone for conventional DTSM estimates, whereas

Table 6. Restricted DTSM—summary statistics

OLS-UR OLS-R BC-R

max(eig(�)) 0.9909 0.9904 0.9953
Half-life 64.0 44.0 92.0
IRF at 5 years 0.52 0.41 0.60

σ (f 61,120
t ) 1.755 1.755 1.755

σ (f̃ 61,120
t ) 1.148 1.058 1.705

σ (f tp
61,120
t ) 1.230 1.369 1.425

NOTE: Summary statistics for OLS estimates of unrestricted model (OLS-UR), as well as
conventional (OLS-R) and bias-corrected (BC-R) estimates of restricted model. Persistence
measures and standard deviations of the fitted 5- to 10-year forward rates and of the
corresponding risk-neutral forward rates and forward term premia.

the bias-corrected estimates imply that policy expectations also
played an important role for the secular decline. The counter-
cyclical pattern of the term premium becomes more pronounced
when we correct for bias. With regard to the most recent reces-
sion in 2007–2009, the bias-corrected estimates imply a term
premium that increases significantly more before and during the
economic downturn.

One potential issue with a more persistent VAR process re-
lates to the zero lower bound on nominal interest rates. If the
policy rate is close to zero, then forecasts based on a highly per-
sistent VAR can potentially drop below zero and stay negative
for an extended period of time. In our setting, at some times dur-
ing 2010 and 2011, the predicted policy rate becomes negative
for horizons up to 2 years. One way to deal with this problem
is to truncate the predicted policy rates at zero. Since we focus
on distant forward rates, this would not change our results, but
it would change the decomposition of other forward rates and
yields.

It should be noted that our results are specific to the data,
model, and restrictions that we have imposed. They cannot be
taken as representative for the impact of risk price restrictions in
general. In some cases, restrictions on risk pricing in a DTSM
might well be able to largely eliminate small-sample bias (Ball
and Torous 1996; Joslin, Priebsch, and Singleton 2010). How-
ever, we clearly demonstrate that in a very standard model set-
ting, zeroing out even a majority of the risk price parameters—
we set five of the nine parameters in �λ1 to zero—does not
reduce the estimation bias. For both unrestricted and restricted
models, small-sample bias is a potentially serious problem. The
only way to assess its importance in a particular model and
dataset is to obtain bias-corrected estimates, and to evaluate
the economic consequences of bias correction. We provide a
framework that researchers can use to make an assessment of
small-sample bias and its interaction with the parameter restric-
tions of their choice.
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Figure 2. Risk price restrictions—decomposition of forward rates. Decomposition of 5- to 10-year forward rates into risk-neutral and term
premium components using alternative DTSM estimates. Sample: monthly observations from January 1985 to December 2011. Gray-shaded
areas correspond to NBER recessions. The online version of this figure is in color.

6. CONCLUSION

Correcting for finite sample bias in estimates of affine DTSMs
has important implications for the estimated persistence of in-
terest rates and for inference about policy expectations and term
premia. Risk-neutral rates, which reflect expectations of future
monetary policy, show significantly more variation for bias-
corrected estimates of the underlying VAR dynamics than for
conventional OLS/ML estimates. Our article shows how one can
overcome the problem of implausibly stable far-ahead short-rate
expectations that several previous studies have criticized. Fur-
thermore, the time series of nominal term premia implied by
bias-corrected DTSM estimates show more reasonable variation
at business cycle frequencies from a macrofinance perspective
than those implied by conventional term premium estimates.
Since our results show that correcting for small-sample bias in
estimates of DTSMs has important economic implications, re-
searchers and policy makers who analyze movements in interest
rates are well advised to use bias-corrected estimators.

Our article is the first to quantify the bias in estimates of
DTSMs and opens up several promising directions for future re-
search. In particular, the question of how other methods that aim
at improving the specification and/or estimation of the dynamic
system fare in terms of bias reduction can be answered using
our framework. Among the approaches that have been proposed
in the literature are inclusion of survey information (Kim and
Orphanides 2005), near-cointegrated specification of the VAR
dynamics (Jardet, Monfort, and Pegoraro 2011), and fractional
integration (Schotman, Tschernig, and Budek 2008). Further-
more, a thorough investigation of the interactions between risk
price restrictions and small-sample bias is warranted.

One issue that this article is not dealing with is whether bias-
corrected confidence intervals are more accurate in repeated
sampling. A related question is to what extent the reduction of
bias increases the variance of the estimator. These are important
questions that are beyond the scope of our analysis.

In terms of extensions of our approach, generalizing it to the
context of nonaffine and non-Gaussian term structure models
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is a desirable next step. One important class of models are
affine models that allow for stochastic volatility, which may be
spanned or unspanned. Another direction is to develop bias-
corrected estimation for models that explicitly impose the zero
lower bound on nominal interest rates.

SUPPLEMENTARY MATERIALS

Appendix: Online Appendix (A) explains conventional boot-
strap bias convention, (B) details indirect inference bias correc-
tion and our algorithm to implement it, (C) explores the per-
formance of alternative bias correction methods in the context
of a bivariate VAR, (D) compares alternative bias correction
methods for estimating the model of Section 4, and (E) pro-
vides details on the parameter bias for the Monte Carlo study in
Section 4.4.
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