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Abstract 

Lucas (1976) argued that the parameters of traditional macroeconometric models 
depended crucially on agents’ expectations and were unlikely to remain stable in 
a changing economic environment. In response, econometric modeling has focused on 
the estimation of rational expectations models that have an explicit structural interpre- 
tation ~ Euler equations in particular. Thus, a natural, though little acknowledged, 
criterion for judging the success of empirical Euler equations is the stability of their 
‘deep’, structural parameters. Examining split-sample tests over multiple breakpoints as 
well as the sequence of subsample model estimates, we find considerable instability in 

the estimated parameters of a standard Euler equation of investment. 
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1. Introduction 

In 1976, Lucas issued a trenchant critique of traditional macroeconometric 
models for their failure to account explicitly for agents’ expectations of future 
variables. He argued that the coefficients of the behavioral equations of these 
models depended, in part, on the parameters describing the formation of agents’ 
expectations; furthermore, under rational expectations, the expectations para- 
meters will reflect agents’ understanding of the underlying economic structure. 
Accordingly, if there were a structural change in the laws of motion for the 
exogenous variables, the coefficients of the models’ behavioral equations could 
not be expected to remain stable. As a prominent example, Lucas criticized Hall 
and Jorgenson’s (1967) use of a neoclassical model of equipment investment to 
gauge the effect of a change in the investment tax credit because such a policy 
intervention should change individuals’ expectations and thus their decision 
rules. 

The basic thrust of the Lucas critique-that the coefficients of reduced-form 
models are not invariant to structural changes- had been acknowledged well 
before 1976.’ However, Lucas’ version of this critique, which stressed the crucial 
role of expectations, was widely viewed as a devastating indictment of tradi- 
tional consumption, wage-price, and investment equations. Following the 
Lucas critique, the coefficients of such empirical models were considered to be 
reduced-form, ‘shallow’ parameters. This resulted in a major reorientation of the 
theory and practice of econometric modelling. As stated by Hansen and Sargent 
(1980, pp. 7-8):’ 

The implication of Lucas’s observation is that instead of estimating the 
parameters of decision rules, what should be estimated are the para- 
meters of agents’ objective functions and of the random processes that 
they faced historically. Disentangling the parameters governing the 
stochastic processes that agents face from the parameters of their objec- 
tive functions would enable the econometrician to predict how agents’ 
decision rules would change across alterations in their stochastic envi- 
ronment. Accomplishing this task is an absolute prerequisite of reliable 
econometric policy evaluation. 

The subsequent research program of rational expectations econometrics has 
attempted to estimate the underlying parameters of taste and technology 
governing objective functions. In particular, much research has focused on 

’ Lucas himself points out that Marschak (1953) and Tinbergen (1956) raised similar criticisms. See 

Favero and Hendry (1992) for a comprehensive review and interpretation of the Lucas critique. 

‘Also see Sargent (1982) and Wallis (1980). 
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the estimation of the stochastic first-order conditions for optimal choice by a 
rational, forward-looking representative agent. Indeed, following Hall (1978) 
this ‘Euler equation’ modelling strategy has dominated empirical work in con- 
sumption. Euler equations also have been widely estimated for investment 
spending, especially in the past few years. A list of empirical Euler equations for 
investment includes: Abel (1980), Pindyck and Rotemberg (1983), Shapiro 
(1986a, b), Gilchrist (1990), Himmelberg (1990), Bizer and Sichel(1991), Gertler, 
Hubbard, and Kashyap (1991), Hubbard and Kashyap (1992), Whited (1992), 
Ng and Schaller (1992), and Carpenter (1992). These papers estimate the first- 
order conditions of the firm’s intertemporal optimization problem given pro- 
duction and adjustment cost functions, and they generally view the resulting 
estimates as shedding light on ‘deep’ technological parameters. 

Although Euler equations have become a very popular approach to model- 
ling investment, there has been surprisingly little examination of their empirical 
adequacy. Without exception, the papers cited above judge model adequacy 
using only Hansen’s (1982) J-test, which tests the orthogonality of instruments 
and errors. Unfortunately, the J-test is not a good test of overall model 
specification. Newey (1985) analyzed the power of Hansen’s test and found that 
the test could not distinguish a variety of local alternatives to the Euler 
equation. Following Newey’s analysis, Ghysels and Hall (1990a) provided a 
particularly apt illustration of the inadequacy of the J-test: they showed that the 
test had asymptotic power equal to size against a class of local alternatives 
characterized by parameter drift. As Ghysels and Hall (1990a, b) argue, 
such alternatives are precisely the relevant ones to confront when testing 
the success of estimated Euler equations. Because the genesis of the Euler 
equation approach can be found in the charge that the parameters of traditional 
models were unstable, it is appropriate that Euler equations be judged on their 
ability to deliver stable estimates of the deep parameters of taste and technology. 

In this paper, we examine an investment Euler equation that is typical of those 
previously estimated in the literature. However, rather than relying on the J-test 
as the sole model diagnostic, we apply a battery of structural stability tests. In 
large part, our examination is inspired by Ghysels and Hall (1990a, b), who 
stress that structural stability tests are a natural diagnostic for the Euler 
equation model. We analyze the stability of the Euler equation with two basic 
techniques. Our first set of tests splits the sample into two parts and compares 
the Euler equation estimates across the two subsamples. These split-sample tests 
for structural stability generalize the usual F-test for structural change in 
a linear regression discussed by Chow (1960). Second, we consider the sequence 
of model estimates obtained by starting with a small set of observations and 
progressively enlarging the estimation sample one observation at a time. This 
sequence of subsample estimates provides direct evidence concerning parameter 
drift. Both types of tests indicate that the standard investment Euler equation 
exhibits substantial parameter instability. 
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This paper is organized as follows. Section 2 derives the Euler equation that 
we shall evaluate and presents the full-sample estimates of its parameters. 
Section 3 conducts formal split-sample tests for parameter stability using 
a range of sample breakpoints. Section 4 presents the sequences of subsample 
estimates of the model’s parameters. Section 5 concludes. 

2. An investment Euler equation 

2.1. The investment model 

The model studied in this paper is representative of investment Euler equa- 
tions that have been estimated in the literature. Although the assumptions 
underlying these models are open to criticism, we have adopted these assump- 
tions because we wished to assess the ability of existing models to meet the Lucas 
critique. The key features of our model are as follows: 

The firm’s production function is assumed to be Cobb-Douglas with con- 
stant returns to scale. Specifically, 

Y, = F(K,-r, L,) = AK;_rLj’-@, (1) 

where Y, and L, are output and employment during period t and K,_ 1 is the 
capital stock at the end of period t - 1.3 

Both capital and labor are quasi-fixed factors subject to quadratic adjustment 
costs. Let AL, = L, - L,_ 1 denote the change in employment, and let I, 
denote gross investment during period t. Then, the specification of adjustment 
costs is 

CU,, &I, AL,, L,-I) =CQ K +W2)~K:l K-I 

+C&W&-I) +W4 W&-I)~ILI 

+ Y(ALIL,) UK) Kt-1, (2) 

where ZK, E I,fK,_ 1.4 Note that the cost of adjusting capital input is allowed 
(with y # 0) to depend on simultaneous adjustments in employment. 

3Thus, capital purchased during t - 1 does not become productive until period t. Such a lag is 

required by our data, which measure investment at the time a capital good is shipped from the 

manufacturer, rather than the later date when it is put into service. 

4 Eq. (2) is characterized by constant returns to scale. With constant returns in both the production 
and adjustment cost functions, the firm’s optimal scale is undetermined; rather, the resulting Euler 

equation implies a structural relation between IK and other variables. 



S.D. Oliner et a/. /Journal of Econometrics 70 (1996) 291-316 295 

The partial derivatives of C with respect to I, and K,_ 1, needed to specify 
the investment Euler equation, are 

CI, = a0 + aIlK, + y(~h/L~), (3) 

CK,. I = - (a,/2) ZK:. (4) 

For the firm’s investment decision to be well-defined, marginal adjustment 
costs must be increasing with the level of investment. That is, a’C/aZ: 
= al/K,_ 1 must be greater than zero, which implies that a1 > 0. We have no 

strong priors on the signs of a0 or y. 

All markets are assumed to be perfectly competitive, implying that the price of 
output, the price of capital goods, and the wage rate are exogenous. We 
normalize both of the input prices by the price of output (pt), and denote the 
resulting real price of capital goods and real wage by p: and w,, respectively. 

The firm’s discount rate is assumed to be exogenous, so financing decisions 
are irrelevant to the optimal investment path. We denote the time-varying 
discount rate used by the firm by rt and the corresponding discount factor by 

B, = f/(1 + rt). 

The depreciation rate on the firm’s capital stock is assumed to be a constant 6. 

Following the usual practice in the literature, we assume that the firm 
maximizes the expected present value of real future profits, 

V, = Et[-p:, KS], 

where 

B?s= fi Bj 

j=t+l 

(5) 

is the multi-period discount factor (with /?& = 1) and 

R, = W-I, L) - Us, Ks-I, AL Ls-I) - w&s - dL 
is real profit in period s. Firms maximize (5) by choosing I,, K,, and L, for all 
s 2 t, subject to the usual constraint on the evolution of their capital stock: 

K,=(l -6)K,_, +I,. (6) 

To carry out this constrained optimization, we define the Lagrangian 

cY,=E, ~B~,[R.-n,CK,-(l-s)K,_,-Z,ll . 
S=f 1 
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Setting a_%‘&, = 0, with x, = (I,, K,, L,), yields the first-order conditions 
linking variables dated s - 1, s, and s + 1. In particular, for s = t, 

I: p: + CI, = I,, (7) 

K: E&+I(&, -C,) = 1, -(l - d)E,P,+r&+r, (8) 

L: FL, - CAL, + E,B,+ I [CAL,., - C,J = wt. (9) 

Eq. (7) is the first-order condition for investment. At the optimal level of 
investment spending, the full cost of acquiring and installing a unit of the capital 
good must equal 1,, the shadow value of a marginal increase in the capital stock 
at time t. Eq. (Q the first-order condition for capital, equates the net marginal 
return on capital in period t + 1 (FK - C,) to the user cost of capital. Eq. (9) 
equates the marginal product of labor, net of adjustment costs, to the real wage. 

To derive the investment Euler equation, combine Eqs. (7) and (8) to eliminate 
1, and At + 1, yielding 

E,B,+,C&, - &,I -P: - C,, + W&+,(1 - 4 CP:+~ + G,+,l = 0. (10) 

Given the production function specified in Eq. (l), the marginal product of 
K, equals 0Y,+,/K,. Substituting this expression for FK, into (lo), along with 
the expressions for the partial derivatives of C from (3) and (4), we obtain 

E,B,+,C~Y,+,IK, + h/WK,2,,1 -P: - ~0 -all& - Y(~WL,) 

+ EA+IU - 4b:+1 + ~0 + ~I~K+I + ~Wt+,lL,)l = 0. (11) 
Now, assume that expectations are rational and denote the expectational error by 
E,, with E,(E, + r ) = 0. Then, after some rearrangement, the Euler equation becomes 

[B;+IP:+I -P:I +aoCh+~ -11 +QC~+JK+I -I& +(Bt+JK:+,/2)1 

+ YC~+&G+I/U -WtL,)I + Wt+~Yt+~lKtl = E~+I, (14 

where Ir + i = fit + 1 (1 - 6). Because we treat b f+ 1 and 6 as data, this equation is 
linear in the four structural parameters to be estimated: CI~, c1r, and y from the 
adjustment cost function, plus the parameter 8 from the production function. 

2.2. Estimation 

We estimated the Euler equation using the Generalized Method of Moments 
(GMM) procedure described in Hansen and Singleton (1982). To set up notation 
that will be useful later, we briefly describe the GMM procedure. To begin, let 
b = [q,, aI, y, 01, the coefficient vector. Then, the Euler equation in (12) can be 
written simply as 

(13) 
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where we have suppressed the dependence of f(e) on the variables. Further, 
denote the instrument set by Z,, which is a q x 1 vector. Under rational 
expectations, these instruments should be orthogonal to the expectational error, 
E,+ r, so that E[Z,f(b)] = 0. The sample counterpart of this set of q population 
moments is 

where T is the number of observations in the full sample. (The subscript ‘r’ refers 
to ‘restricted’, a notation that will be useful below.) The GMM estimate is 
defined as the value of b that minimizes 

Jr(b) = CsA~)l’WrCgr @)I, (15) 

where W, is the optimal weighting matrix described in Newey and West 
(1987a).5 The J-statistic, used for testing the model’s overidentifying restrictions, 
equals the number of observations (T ) multiplied by the minimized value of (15). 
This statistic is asymptotically distributed as x2 with degrees of freedom equal to 
the number of instruments minus the number of parameters. 

Before proceeding to estimation, we need to define our instrument set, Z,. For 
the GMM estimates to be consistent, the instruments must be uncorrelated with 
the error term in the Euler equation. Given the assumption of rational expecta- 
tions, any variable in the firm’s information set at time t would be uncorrelated 
with the expectational error a,+ r. This reasoning implies that any variable dated 
t - 1 or earlier would be a valid instrument, provided that the error term in the 
Euler equation reflects expectational error and nothing more. However, to 
protect ourselves against certain forms of measurement error that could lead to 
inconsistent estimates, we restrict our instrument set to variables dated t - 2 
and earlier.‘j Accordingly, Z, is specified to be a 13-element vector consisting of 

s This weighting matrix yields a positive definite covariance matrix for the parameter estimates that 
is robust to heteroskedasticity and serial correlation of unknown type. Following a suggestion in 
Newey and West (1987a), the lag length for the covariance matrix was always set equal to the sample 
size raised to the one-third power. 

6 To be specific, consider classical measurement error where x, equals the true value, x:, plus white 
noise, n,. If x, enters the Euler equation linearly, ‘I, is incorporated into the equation’s error term. 
Because our Euler equation includes variables dated as early as r - 1, the error term could include 
n,_ 1, so valid instruments would have to be dated t - 2 or earlier. Of course, even with this early 
dating, consistency is not guaranteed if the measurement error is serially correlated or if it affects 
IK,, which enters the Euler equation as a quadratic. 

Because investment Euler equations typically have been estimated with variables dated r - 1 as 
instruments, we also performed all of our empirical work using an instrument set that included the 
first and second lags of each variable in Z,. The results with this alternative instrument set were not 
appreciably different from those reported below. 
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Table 1 

Estimates of the Euler equation for business equipment over 1960: 1 to 1991: 3 (standard errors in 

parentheses) 

Parameter 

a0 Y o 

J-statistic 

Value 

Marginal 

sig. level 

- 0.760 1.168 0.872 0.042 9.9 0.36 

(0.187) (1.93) (0.695) (0.020) 

a constant and the second and third lags of p:, IK,, IK:, Y,IK,_ 1, AL,/L,_l, 
and pt. 

We estimate Eq. (12) for the United States using data from 1960: 1 to 
1991:4 on the discount rate; on aggregate business sector output and employ- 
ment; and on investment, capital stock, the tax-adjusted purchase price, and the 
depreciation rate for business equipment. The Appendix discusses the construc- 
tion and data sources for each series.’ The Euler equation- which requires one 
lead of data for expected variables- is estimated from 1960: 1 to 1991: 3, with the 
results shown in Table 1. Of the four parameters, we have theoretical priors on 
a, and 0. The point estimates of both parameters are positive, consistent with 
these priors. However, the standard error of a1 is quite large, and the coefficient 
is not significantly different from zero. In addition, the parameter 8 - which 
should equal the income share of equipment - is somewhat smaller than might 
be expected. The J-statistic does not reject the overidentifying restrictions, 
suggesting that the orthogonality assumptions of the model are satisfied. How- 
ever, as noted in the introduction, the J-statistic is a weak test of overall model 
adequacy; thus, we embark on a more complete examination of model specifica- 
tion. 

3. Split-sample tests of structural stability 

The preceding section presented GMM estimates of a standard investment 
Euler equation, accompanied by the J-statistic. This information constitutes the 
full empirical analysis - including both model estimation and validation - under- 
taken by all previous studies in this area. In contrast, we take these full-sample 

‘We excluded nonresidential structures from our empirical Euler equation because of the poor 

performance of most models for this type of capital (see, for example, Oliner, Rudebusch, and Sichel, 
1995). 
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estimates as merely a starting point for a more thorough investigation of the 
adequacy of the Euler equation. In this section, we focus on split-sample tests of 
structural stability. For a sample of T observations and a breakpoint at time T1, 
the first subsample contains the T1 observations dated t = 1, . . . , T1 and the 
second subsample contains the T2 observations dated t = T1 + 1, . . . , T, with 
T = T1 + T2. We employ three split-sample tests to evaluate structural stabil- 
ity across these two partial samples. The first two are the Wald test and D test, 
which were described by Newey and West ( 1987b).8 The third test was proposed 
by Ghysels and Hall (1990b); we refer to this as the GH test. After describing the 
general form of these tests, we present the test results for the investment Euler 
equation. 

3.1. Three tests 

3.1.1 Wald test 
To test for a structural shift, the Wald test compares the model estimates from 

each of the two subsamples. Let the vectors bl and b2 denote the parameter 
values for the first and second subsamples, respectively. To obtain estimates of 
these parameters, we define the unrestricted model using a dummy variable, 
denoted d,, that equals zero in every period through the breakpoint and equals 
unity in every period after the breakpoint. With this notation, the unrestricted 
Euler equation can be written as 

(1 - d,)f(b,) + d,f(b,) = a,+ 1, (16) 

or to simplify further, 

f,(bi, b2) = &,+I. (17) 

To estimate bl and b2, we use the same 13 instruments, denoted Z,, as for the 
full-sample estimation.’ Analogous to Eq. (14) above, the sample moment 
conditions for the unrestricted model are 

gu(bi, b,) = (l/T) ; Z,fu (b,, b,). 
1=1 

(18) 

The GMM estimates (hi, 6,) of the unrestricted model are defined as the values 
of bl and b2 that minimize 

J,(bi, b,) = Cg,(bi> b,)l’WuCg.@,, bdl, (19) 

where W, is the Newey-West weighting matrix for the unrestricted model. 

sAlso see the discussion in Andrews and Fair (1988). 

‘Throughout our analysis, we do not vary our instrument set; this issue is considered further in 

Section 3.2 below. 
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With these unrestricted model estimates, the Wald statistic for testing the null 
hypothesis that b1 = bz is a quadratic form in the difference between 6, and 6,. 
Namely, 

WALD = T [b, - &I M[& - bz], (20) 

where M is the appropriate weighting matrix for the quadratic form. See Newey 
and West (1987b) for details. Under the null hypothesis, this test has an 
asymptotic x2 distribution, with degrees of freedom equal to the number of 
restrictions tested. For our application, b1 = b2 implies four restrictions. 

3.1.2. D test 
The form of the D test is fairly intuitive. Loosely speaking, the test statistic 

equals the difference between the J-statistics obtained from the restricted and 
unrestricted models. Thus, the D test has the same form as a likelihood ratio test, 
because the test statistic is the difference between the optimal values of a re- 
stricted and an unrestricted objective function. The unrestricted estimates, in 
which the parameters are allowed to differ across the two subsamples, are 
exactly (hi, 6,) described above for the Wald test. For the restricted model, in 
which parameters do not differ across subsamples, we need estimates of b from 
Eq. (13). 

It might seem appropriate to obtain the restricted estimates by minimizing the 
objective function in (1.Q which is repeated here: 

J,(b) = CsAWWr Csr@)l. (211 

However, as Newey and West (1987b) point out, the restricted and unrestricted 
GMM estimates for the D test must be obtained by using the same weighting 
matrix. For example, one alternative we explore used the unrestricted weighting 
matrix W, for both estimates. In this case, the restricted GMM parameter 
vector, 6, is the value of b that minimizes a hybrid quadratic form 

J,(b) = CsAb)l’WuCs#4l~ (22) 
where W, is the same matrix used in Eq. (19) above. Let J,(6) denote the 
minimized value of the restricted GMM objective function in (22) and let 
J&i, 6,) denote the minimized value of the unrestricted GMM objective 
function in (19). Then, the D test for this choice of weighting matrix is defined 
as the sample size multiplied by the difference between the restricted and 
unrestricted minimands: 

D = T [J,(F) - A,(&, &I. 

Under the null hypothesis that bl = b2, this test statistic has the same asymp- 
totic distribution as the Wald statistic, a x2 distribution with degrees of freedom 
equal to the number of parameters tested for constancy. 
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In constructing the D test, we also explored the obvious alternative of using 
the restricted weighting matrix W, in constructing both the unrestricted and 
restricted GMM estimates. Issues relating to the choice of the weighting matrix 
are discussed further below. 

3.1.3. GH test 
The tests above focus on the restricted and unrestricted parameter vectors. In 

contrast, Ghysels and Hall (1990b) have proposed a test for the structural 
stability of models estimated by GMM that focuses on the moment conditions 
across subsamples. lo Their test estimates the model over the first subsample and 
then examines whether the moment conditions of the model are satisfied over 
the second subsample using the parameter estimates obtained in the Jirst sub- 
sample. 

Specifically, the null hypothesis of structural stability for the Ghysels and Hall 
(GH) test is 

Ho: ECGf(b~)l = 0 for teC1, TII, 
E[Z,f(b,)] = 0 for te[T, + 1, 7’1. 

This null specifies that the population moment conditions delivered by the Euler 
equation and the instruments hold over both subsamples for the same set of 
coefficients. The alternative hypothesis is 

H,: EIZt.IIh)l = 0 for teC1, TII, 

E[Z,f(b,)] # 0 for te[T1 + 1, T]. 

That is, under the alternative hypothesis, the set of parameters that satisfy the 
moment conditions of the model in the first subsample do not satisfy those 
conditions in the second subsample. 

To develop a formal test, define the sample moment conditions for the first 
subsample as 

g,(b,) = (l/T,) ; Z,f(b,). 
1=1 

The vector of GMM estimates generated by these conditions is 6, (which, of 
course, is the same as the estimates obtained from the unrestricted model above 
over the first subsample). Next, define g2(6,) as the sample moment conditions 
for the second subsample evaluated at the parameter estimates from the first 

“‘This test was independently proposed in Hoffman and Pagan (1989) 
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subsample. That is, 

Using this notation, the GH test statistic is 

GH = TX Cs~(~dI’~-l Cs&dl, (23) 

where P is a consistent estimator of the weighting matrix V, which is described 
further below. 

The intuition behind the GH test is clear: if the null hypothesis is true, the 
parameter estimates from the first subsample should nearly satisfy the moment 
conditions over the second subsample- that is, g&r) should be close to zero. If 
g2(6,) is not close to zero, then some aspect of the structure of the model must 
have changed across the two subsamples.” The GH test is asymptotically 
distributed x2 with degrees of freedom equal to the number of elements of g2, 
that is, the number of moment conditions that are examined over the second 
subsample. In our application with 13 instruments, the test has 13 degrees of 
freedom. 

The matrix I/ is defined as 

I’= W;’ + cDz [D;W,D,]-‘o;, (24) 

where WI and W2 are estimates of the GMM weighting matrices for the first 
and second subsamples, c is the ratio T1/T2, and D1 and D2 are the derivatives 
of gl and g2 with respect to the parameter vector. 

We consider three different estimates of V, all of which have the same 
asymptotic distribution under the null hypothesis but take on different values in 
finite samples. Although all three versions of P use estimates of Dl and 
D2 evaluated at Fl, they employ different estimates of WI and W2. The first 
estimate of V, following Ghysels and Hall, obtains consistent estimates of both 
WI and W2 using $r, so that the estimated weighting matrix for the second 
subsample relies on parameter estimates from the first subsample. l2 We denote 
the resulting estimate of V by 9,. The second estimate, denoted by p2, uses the 
I?2 constructed for the Euler equation estimated over the second subsample. 
Thus, I%‘r is based on bJ and I@2 is based on &. The third alternative, P,, 
replaces both I?‘1 and W2 by I%‘,, the weighting matrix associated with the 

r r Note that the GH test is effectively an average of a set of estimated residuals. Dufour, Ghysels, and 

Hall (1994) propose an extension of the GH test that examines the information in individual 

residuals. 

rZGhysels and Hall refer to this test as the TS test. They argue that constructing this estimate of 

V provides some computational convenience because the model needs to be estimated only over the 
first subsample. In practice, we found this convenience to be negligible. 
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restricted model described above that estimates b over the full sample.’ 3 Empiri- 
cal results for all three versions of the GH test are presented below. As we shall 
show, the exact specification of the weighting matrix P has a large influence on 
the results obtained in our application. 

3.2. Empirical results 

Before examining the results for specific tests, two important details must be 
addressed: the choice of a breakpoint and the choice of an instrument set. For 
the Wald and D test, we move the breakpoint sequentially through the sample 
and compute a test statistic for each breakpoint. The breakpoint with the 
highest value of the test statistic can be used to test whether the model’s 
parameters are constant across the subsamples defined by this breakpoint. 
However, because the data are used to determine this breakpoint, the maximal 
test statistic will not have a conventional distribution. Instead, it is necessary to 
use the distribution worked out by Andrews (1993) for maximal F-type tests. 
Unfortunately, for the GH test, the distribution of such a maximal test statistic is 
unknown; thus, we select a priori a mid-sample breakpoint and calculate the GH 
statistic-a case for which the usual distribution theory is applicable-and then 
compute a sequence of GH test statistics over the sample to check whether the 
mid-sample value is representative. 

Although general efficiency arguments, such as those in Hansen, Heaton, and 
Ogaki (1988), can be made regarding the choice of an instrument set, little 
practical guidance is available for finite samples. For our entire analysis, we 
maintained the same instrument set used in the full-sample estimation. As an 
alternative, our implementation of the Wald test and the D test could have 
used an instrument set including the dummy variable d, or the dummy 
variable interacting with other instruments. Furthermore, for the GH test we 
could have used completely different variables as instruments for each of the 
subsamples.’ 4 

3.2.1. Wald test 
The top panel of Fig. 1 plots the value of the Wald statistic for each period 

using that period as the breakpoint. We compute test statistics for every possible 
breakpoint from 1964:2 to 1987:2, which corresponds to the middle 70 percent 

I3 This final version of the GH test is very close to what Ghysels and Hall propose as the TSS test, 

which uses a hybrid estimate of W, based on 6,. 

I4 As noted by Ghysels and Hall (1990a), different instruments in the second sample may be chosen 

in order to construct a test that is more powerful against departures from the null in particular 

directions. 
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Fig. 1. Wald and D test statistics for equipment Euler equation (four degrees of freedom). 
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of the sample. l5 If the breakpoint were specified a priori, the conventional 
critical value for a x2 statistic with four degrees of freedom would be appropri- 
ate; at the 5 percent significance level, this critical value is 9.5. However, for the 
sequence of Wald test statistics over all breakpoints, the distribution worked out 
by Andrews (1993) is more appropriate. For our range of breakpoints, the 
asymptotic critical values for the maximal test statistic are 16.5 at the 5 percent 
level and 20.7 at the 1 percent level. As shown, the Wald statistic exceeds 20 for 
a range of breakpoints around the early 1970s. Thus, even using Andrew’s 
critical values, the Wald test provides strong evidence of parameter noncon- 
stancy in the Euler equation. 

3.2.2. D test 

Results for the sequential D test are shown in the bottom panel of Fig. 1. 
Because the D test has the same asymptotic distribution as the Wald test under 
the null, the critical values noted above are applicable. As mentioned above, the 
restricted and unrestricted GMM estimates for the D test must be obtained 
using the same weighting matrix; we examined two alternatives: the weighting 
matrix from the unrestricted model (I@“) and the weighting matrix from the 
restricted model (Gr). Of course, this choice does not affect the asymptotic 
distribution of the test statistic because, under the null, both I@, and I@V are 
consistent estimates of the weighting matrix. However, as a numerical matter, 
the choice of weighting matrix turned out to make a sizable difference in our 
application. In particular, as shown in the chart, using the restricted matrix- 
rather than the unrestricted matrix-yielded lower values for the D test. The 
D test with I%‘” rejects structural stability for most breakpoints near the middle 
of the sample, while the D test with I@, never rejects.16 

We suspect that the numerical differences for the D test reflect differences in 
power of the two versions of the test. In particular, under the alternative 
hypothesis (b, # b2) , the unrestricted weighting matrix ( mir,) remains a consis- 
tent estimate of the weighting matrix, but W, would be inconsistent. Therefore, 
a D test based on @, may well have better power against alternatives of 
parameter nonconstancy than tests based on the restricted matrix, fir.17 

“The choice of this range is somewhat arbitrary but is recommended by Andrews (1993) on the 
basis of a Monte Carlo experiment that explores the trade-off between the length of the range and 
test power. 

I6 For our model, which is linear in the parameter vector, the values of the Wald statistic and the 
D-statistic based on the unrestricted weighting matrix are the same. See Newey and West (1987b) for 
further discussion of this point. 

” On the other hand, as suggested by a referee, the unrestricted parameter estimates may overfit the 
data in small samples and make the standard errors too tight. In this case, the unrestricted weighting 
matrix tests may overreject under the null (i.e., a size distortion). 
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Fig. 2. Ghysels-Hall test statistics for equipment Euler equation. 

3.2.3. GH test 
For the GH test, we first split the sample at its midpoint, placing all observa- 

tions through the second quarter of 1975 in the first subsample. With a midpoint 
break, the value of the GH statistic using PI is 8.6, well below the critical value 
of 22.4 for a x2 (13) test at the 5 percent significance level. However, the GH test 
statistic using p2- which has the same asymptotic distribution as the statistic 
using PI -equaled 22.5, just above the critical value. Finally, the GH test using 
k, provides a test statistic of 7.4, less than the critical value.” The numerical 
differences in these test statistics indicate that the GH test can be very sensitive 
to the choice of a weighting matrix, as is the D test.” 

“As discussed by Ghysels and Hall (1990b), the GH test can be specialized to focus on a single 
moment condition. For the mid-sample split, we computed such specialized GH tests for each of the 
13 moment conditions (using each of the three estimates of V). These tests suggested that no single 
moment condition was particularly responsible for the rejection in the joint test of all moments. 

r9As indicated above, the lag length used for the covariance matrix was always set equal to the 
sample size raised to the one-third power. We also tried the lag lengths chosen by the optimal lag 
selection procedure in Newey and West (1992). These, however, varied substantially as the break- 
point moved through the sample, raising the possibility that there may not be enough observations 
for this procedure to have optimal properties. With such lags, the D and Wald tests no longer 
rejected parameter constancy, but the results from the GH test were essentially unchanged. 
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On balance, the GH test with a mid-sample split provides some evidence of 
structural instability. In order to check the robustness of the test results, we also 
computed the three versions of the GH test for all breakpoints in the middle 70 
percent of the sample. The resulting sequence of statistics for the three versions 
of the GH test are shown in Fig. 2. Strictly speaking, the distribution of these 
sequences is unknown, as the Andrews results do not generalize to the GH test. 
However, the sequences shown can indicate whether the mid-sample results are 
atypical. The results for the GH statistic based on p2 appear to confirm the 
structural instability suggested by the mid-sample test. 

4. Subsample parameter estimates 

While the preceding section provided evidence of structural instability in the 
Euler equation, the results were sensitive to the choice of the weighting matrix. 
In this section, we provide more evidence on the parameter nonconstancy of the 
Euler equation using a complementary but less formal technique. We diagnose 
parameter nonconstancy by examining how subsample parameter estimates 
change as additional observations are included in the estimation period. The 
resulting sequence of subsample model estimates provides clear, intuitive in- 
formation about possible instabilities.20 

To implement this technique, we first estimate the Euler equation over the 
15-observation subsample from 1960: 1 to 1963:3, then add one observation, 
reestimate, add another observation, reestimate, and so on. To gauge whether 
the movements in the parameter estimates are large enough to indicate noncon- 
stancy, we include a confidence bound for each coefficient equal to plus and 
minus two standard errors (as estimated over the subsample for that coefficient). 
If the parameter estimates are stable, then each estimate should remain inside 
the band plotted up to that point. Further, if a parameter exhibits constancy, 
additional observations should improve the efficiency of the parameter esti- 
mates, implying that the confidence bands should narrow with the addition of 
new observations. 

The first two panels of Fig. 3 display the sequence of estimates for the 
adjustment cost parameters, CX~ and LYE. As the top panel shows, the linear 
adjustment cost parameter, c(~, initially drifts down and then reverses course 
once the subexamples extend into the late 1960s. The estimates at 

*‘The classic reference for sequential estimation of a linear model over partial samples is Brown, 

Durbin, and Evans (1975) (also see Dufour, 1982). Such sequences of parameter estimates are often 

referred to as recursive estimates, a term we eschew because we do not employ a recursive algorithm 

for estimation. 
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Fig. 3. Subsample estimates for equipment Euler equation (dashed lines show bands of plus and 
minus two standard errors for each coefficient). 
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the end of the sample are clearly outside the error bands from the earlier part of 
the sample, suggesting that this parameter is not constant over the sample. 
Similarly, the estimates of the quadratic adjustment cost parameter, cxl, increase 
from about zero in the early part of the sample period to values above 10 for 
subsamples ending in the late 1960s and the early 1970s. This parameter then 
drifts back down toward zero with further lengthening of the estimation period. 
At several points, the values of rxl breach the error bands earlier in the sample 
period. In addition, the error bands do not narrow much as the sample is 
lengthened. Thus, we conclude that c(~, like c(~, does not exhibit constancy over 
the sample. 

The next panel of Fig. 3 shows the sequence of estimates of the interactive 
parameter for labor and capital adjustment costs, y. This parameter is volatile in 
the first part of the sample and then begins a gradual upward drift. Clearly, some 
of the values of the parameter breach earlier error bounds. In addition, the error 
bands do not contract later in the sample. The final panel of the chart shows 
estimates of the production function parameter, 0. Exhibiting a pattern similar 
to ao, this parameter begins to drift upward in the late 1960s eventually 
breaching its earlier bounds. Overall, the subsample evidence for both of these 
parameters suggests the presence of nonconstancy. 

A word of caution is in order about the interpretation of the subsample 
estimates. The results in Fig. 3 could have been obtained even under the null 
of no structural change if there were small-sample biases in the estimates of 
the parameters and their standard errors. For example, it is possible that 
the asymptotic confidence bands simply understate the true variability of the 
parameter estimates early in the sample, leading one to conclude incorrectly that 
there had been structural change. Although a Monte Carlo simulation would be 
required to examine this possibility explicitly, it is worth noting that the 
rejections from the Wald and D test occur near the middle of the sample, at 
a point where small-sample problems are minimized. 

5. Conclusion 

Over a decade ago, Lucas and Sargent (1981, pp. 302-303) stated their view of 
the ‘failure’ of macroeconometrics: 

[The] question of whether a particular model is structural is an empiri- 
cal, not theoretical, one. If the macroeconometric models had compiled 
a record of parameter stability, particularly in the face of breaks in the 
stochastic behavior of the exogenous variables and disturbances, one 
would be skeptical as to the importance of prior theoretical objections of 
the sort we have raised. In fact, however, the track record of the major 
econometric models is . . . very poor. 
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Our results suggest that this indictment may be apt for Euler equations as well. 
It appears that the Euler equation approach in investment has not, thus far, been 
a success when judged by the standards of the Lucas critique-arguably, the 
most relevant standards. In particular, an Euler equation representative of those 
in the applied investment literature exhibits a considerable degree of parameter 
instability. Indeed, in light of the results of Chirinko (1988) and Dufour (1989) 
that show only a modest amount of parameter nonconstancy in traditional 
reduced-form investment models such as the neoclassical model, the empirical 
Euler equation appears to provide no improvement when judged by the metric 
of structural stability.” 

We draw two major conclusions from our results. First, as a methodological 
note, our results recommend a major re-orientation in the evaluation of GMM 
estimates of Euler equations. Given the obvious inadequacy of the J-test as 
a test for model misspecification, parameter stability tests should routinely 
be reported for empirical Euler equations. ” Furthermore, the sensitivity of 
some of our results to small differences of technique that should make no 
difference asymptotically - for example, in the specification of weighting 
matrices ~ suggests that the asymptotic distribution theory that underpins 
the application of GMM may be misleading in small samples.23 

Second, as a substantive conclusion, we question whether Euler equations will 
be successful in uncovering structural parameters, at least for aggregate invest- 
ment. Our evidence could be criticized on the grounds that our particular Euler 
equation is just an incorrectly specified model. However, the hard .question, 
given the similarity of our model to earlier work, is whether any tractable Euler 
equation for investment can be found that is not misspecified. Surprisingly, there 
has been little skepticism about the modelling potential of the Euler equation 
approach to macroeconometrics. The tight restrictions imposed on dynamic 
structure by an Euler equation as well as the difficulties in rigorously aggregat- 
ing across heterogeneous firms and heterogeneous types of capital, appear to 
make structural analysis a perilous exercise. We doubt that this challenge can be 
easily met. 

I1 When we examined the parameter stability of a traditional neoclassical model in our data set, we 

found no more instability than for the Euler equation. However, in other work (Oliner, Rudebusch, 

and Sichel, 1995), we have found that in terms of out-of-sample predictive power, a metric quite 

sensitive to problems of structural adequacy, the traditional models perform much better than the 

Euler equation. 

“The few examples that we are aware of in this regard are West (1988) Ghysels and Hall (1990a), 

Epstein and Zin (1991), Osterberg(l992) Demers, Demers, and Schaller (1993), and Wirjanto (1993). 

” Indeed, see West and Wilcox (1994) on the inadequacy of the asymptotic distribution theory for 

finite samples. 

Z4Exceptions include Garber and King (1983) Blinder (1986), and Ando (1989). 
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Data appendix 

Investment (I) 
Quarterly spending on producers’ durable equipment in billions of 1987 

dollars, seasonally adjusted; from the U.S. National Income and Product Ac- 
counts (NIPAs). 

Capital stock (K) 
We interpolated a quarterly series from the annual net stock of private 

nonresidential equipment published by the Bureau of Economic Analysis (BEA). 
To do so, we set the fourth-quarter value of the interpolated series equal to the 
value of BEA’s (year-end) net stock for that year. Then, to interpolate between 
year-end values, we assumed that the quarterly changes in the stock of equip- 
ment were proportional to the quarterly pattern of the corresponding invest- 
ment outlays. The resulting quarterly capital stocks are measured in billions of 
1987 dollars. 

Employment (L) 
Monthly employment on private nonfarm payrolls, in millions of persons, 

seasonally adjusted; from the Bureau of Labor Statistics. We averaged the 
monthly data to obtain a quarterly series. 

output (Y) 
Quarterly gross domestic product in the nonfarm business sector excluding 

housing, in billions of 1987 dollars, seasonally adjusted; from the NIPAs. 

Purchase price of capital goods (p’) 
We constructed the following index of the after-tax purchase price of equip- 

ment: 

p: = 
PPDE, 

[ I[ 1 - ITCE, - t,ZPDE,(l - WJTCE,) 

Pt (1 - 4 I. (A.11 

PPDE, and pr are, respectively, the NIPA implicit price deflators for producers’ 
durable equipment and gross domestic product in the nonfarm business sector 
excluding housing; both series are seasonally adjusted by the BEA. The remain- 
ing pieces of (A.l) are tax parameters: ~~ is the maximum corporate tax rate in 
effect during quarter t; ZTCE, is the average rate of investment tax credit for 
equipment; W, is the percentage of the cost of equipment that cannot be 
depreciated if the firm takes the investment tax credit; and ZPDE, represents the 
present value of $1 of depreciation allowances for equipment. W,, I TCE,, and 
zt were taken from the Federal Reserve Board’s Quarterly Econometric Model; 
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see Brayton and Mauskopf (1985) for the construction of variables in the 
Quarterly Model. To compute ZPDE,, we discounted the stream of future tax 
depreciation allowances using the discount rate (1 - z,)RB,, where RB, is the 
interest rate on ten-year U.S. Treasury bonds. We used the Treasury rate, rather 
than an interest rate on corporate debt, because the tax allowances are (essen- 
tially) a risk-free income flow. 

Discount rate (r) 
r1 measures the real opportunity cost of funds for the firm. Following the 

procedure in the Federal Reserve Board’s Quarterly Model, we specified rI to be 
a weighted average of the returns to debt and equity: 

rt = ordt + (1 - w)re,, 

with 

rd, = (1 - rl) RTB, - EPB, and ret = 2*DIVP,. 

We set the weight on debt, o, to 0.3; this relatively small debt share reflects the 
heavy reliance firms place on retained earnings as a source of funds. RTB, is the 
yield on three-month Treasury bills; we use a short-term interest rate because 
the Euler equation (12) discounts terms dated at quarter t + 1 only back to 
quarter t. z, is (as above) the maximum corporate tax rate, and EPB, is the 
expected inflation rate for the business output deflator pt, computed as a geo- 
metrically-declining weighted average of the most recent 12 quarters of inflation 
in that series. re, equals two times the Standard and Poor’s dividend-price 
ratio for common stocks; DZVP is multiplied by two on the assumption that 
dividend payouts represent about one-half of the return to equity. The data for 
DIVP and r were taken directly from the Federal Reserve Board’s Quarterly 
Model. 

The resulting estimate of r1 is at an annual rate. To compute the discount 
factor fl at a quarterly rate, we set j? = [l/(1 + rl)]“,*‘. 

Depreciation rate (6) 
6 = 0.03784. This is the quarterly depreciation rate for equipment specified in 

Bernanke, Bohn, and Reiss (1988). 
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