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JUDGING INSTRUMENT RELEVANCE IN INSTRUMENTAL 
VARIABLES ESTIMATION* 

BY ALASTAIR R. HALL, GLENN D. RUDEBUSCH, 

AND DAVID W. WILCOX1 

Recent research has emphasized the poor finite-sample performance of the 
instrumental variables (IV) estimator when the instruments are weakly corre- 
lated with the regressors. We show how the canonical correlations between 
regressors and instruments can provide a measure of instrument relevance in 
the general multiple-instrument-multiple-regressor case. However, our simula- 
tion results indicate that any such relevance measure probably has little 
practical merit, as its use may actually exacerbate the poor finite-sample 
properties of the IV estimator. 

1. INTRODUCTION 

Instrumental variables (IV) estimation is a popular econometric technique largely 
because it provides consistent, asymptotically normal estimates even in the presence 
of endogenous regressors. To implement this technique, one must specify a set of 
instruments. Ideally, an instrument should possess two key properties: (1) relevance, 
a high correlation with that portion of the endogenous regressors that cannot be 
explained by the other instruments, and (2) exogeneity, no correlation with the 
innovations in the dependent variable. The finite-sample distribution of the IV 
estimator has long been known (notably, Sawa 1969). Despite the fact that this 
distribution differs (potentially greatly) from the usual asymptotic approximation 
unless the instruments are both exogenous and relevant, most applied work has 
ignored the issue of instrument relevance and has focused only on verifying 
instrument exogeneity.2 

To rectify this imbalance, recent research has emphasized that an IV estimator 
will have poor finite-sample performance if the instruments have low relevance for 
the regressors. For example, Nelson and Startz (1990a, b), and Maddala and Jeong 
(1992) examine the behavior of the IV estimator in the one-regressor-one-instru- 
ment model when the correlation between the regressor and the instrument is very 

* Manuscript received February 1994; final revision March 1995. 
1 We are grateful to James Hamilton for very useful discussions about this work; for helpful 

comments, we thank Peter Burridge, Haluk Erlat, V. Kerry Smith, and Ken Wallis as well as 
seminar participants at North Carolina State University, the University of Pennsylvania, and 
Warwick University. The views expressed here are those of the authors and are not necessarily 
shared by anyone else in the Federal Reserve System. 

2 For example, the popular J-statistic introduced by Hansen (1982) only tests whether instru- 
ments are exogenous. Some notable exceptions are Fisher (1965) and Mitchell and Fisher (1970), 
who propose using information on structural relationships to choose instruments in simultaneous 
equation models, and Shea (1993a), who selects instruments using prior information from 
input-output tables. 
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low. The results of these authors indicate that standard statistical inference in such 
circumstances may be very misleading. Most seriously, when the true coefficient on 
the regressor is zero, its finite-sample IV estimate may appear to be highly 
significant. Similar results in more general cases with multiple regressors or instru- 
ments have been described by Bound, Jaeger, and Baker (1995), Shea (1993b), and 
Staiger and Stock (1994). 

These recent papers also have provided practical advice to producers and con- 
sumers of IV estimates. For example, in the one-instrument-one-regressor case, 
Nelson and Startz (1990a) suggest using T-R2 from the first-stage regression (of the 
regressor on the instrument) as a diagnostic for identifying situations in which 
inference may be unreliable because the instrument is not sufficiently relevant. In 
the one-regressor-multiple-instrument model, Bound, Jaeger, and Baker (1995) 
promote the use of the obvious analogue to the Nelson-Startz measure, namely the 
F-statistic on the joint significance of all of the instruments in the first-stage 
regression. Similarly, Shea (1993b) provides a "partial R2" measure of the relevance 
of instruments in a multiple-regressor-multiple-instrument model. 

Much of this recent research appears to encourage practitioners of IV estimation 
to choose among alternative structural IV estimates based on the measured rele- 
vance of the alternative underlying instrument sets. For example, Shea (1993b, 
pp. 1-2) argues that his partial R2 measure "...can be used to compare the 
relevance of different potential instrument lists, to identify cases in which hypothesis 
tests may have low power because of poor instruments, and to identify cases in 
which IV may be misleading in finite samples." It is our impression that such 
diagnostic procedures have been adopted by many applied researchers and that, in 
many instances, instrument sets have been selected, and results reported, on the 
basis of the goodness of fit of the first-stage regression. Such reasoning is explicit, 
for example, in Campbell and Mankiw (1989), and Patterson and Pesaran (1992). 

Our aim is to evaluate the usefulness of these types of diagnostic procedures. One 
problem in addressing this issue is that the literature on instrument relevance has 
been rather fractured with different screening tests proposed, depending on the 
number of regressors or instruments. In this paper, we provide a general framework 
for considering the question of instrument relevance in linear models based on the 
canonical correlations between the instruments and regressors. This framework has 
a number of advantages. First, it clarifies the link between instrument relevance and 
model identification. Second, it provides a single test of instrument relevance in the 
multiple-regressor-multiple-instrument model that encompasses the R2 and F-sta- 
tistics as special cases. Using this statistic, we examine whether the proposed 
diagnostic procedure can aid in structural inference. 

In particular, we consider whether a statistic measuring instrument relevance can 
be used to select an instrument set with favorable properties and thus improve the 
reliability of finite-sample inference. Our simulation results indicate that statistics 
like the one we analyze here are not suitable for use in such pre-estimation 
screening procedures. In fact, such pre-estimation screening may exaggerate rather 
than alleviate the size distortion described by Nelson and Startz: The probability 
distribution of the IV estimator based on a "good" instrument (as identified by the 
use of a relevance statistic as a screening device) can be even more distorted than 
the one based on a random (i.e., unscreened) instrument. In essence, this error 
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arises because those instruments that are identified as having high relevance for the 
regressors in the sample are also likely to have higher endogeneity in the sample. We 
conclude that any practical recommendations will have to avoid the use of a 
relevance statistic as a screening device and focus on an analysis of the distributions 
of the estimated parameters and hypothesis tests conditional on the realized value 
of the relevance statistic. This is the strategy being pursued by Staiger and Stock 
(1994). 

The paper is organized as follows. The next section reviews the characteristics of 
a good instrument and the consequences for inference of using a poor one. Section 3 
shows that canonical correlations provide a natural measure of instrument relevance 
and hence can form the basis of a test of instrument relevance. Section 4 describes 
the simulation design and some results for the one-regressor-one-instrument case. 
Like those of previous authors, the results presented in this section appear to 
suggest that a test of instrument relevance can provide useful information for 
structural inference. However, in Section 5, we examine the usefulness of the 
relevance statistic as a pre-estimation screening test for instrument quality and 
demonstrate the hazards of this procedure for structural inference. The conceptual 
experiment in Section 5 involves selecting one satisfactory instrument from among a 
(potentially unlimited) set of candidates; Section 6 shows that similar hazards exist 
when the relevance statistic is used to render an up-or-down vote on a single 
instrument. Section 7 concludes with a summary and, most importantly, a discussion 
of recent research that provides constructive recommendations about how to con- 
duct inference for the applied researcher. 

2. THE CONSEQUENCES OF A POOR INSTRUMENT 

Consider the linear regression model 

(1) y =XP + u 

where y is a (T X 1) vector of observations on the dependent variable, X is a (T x n) 
matrix of regressors with rank(X) = n, u is a (T x 1) vector of observations on the 
error process with E(u) = 0 and var(u) =o2IT, and j3 is an (n x 1) vector of 
unknown parameters. Let Z be a (T x k) matrix of instruments with k > n. 
Throughout this paper, we focus on the instrumental variables (IV) estimator given 
by 

A 

(2) ,3= (X'PzX) X'PZy 

where Pz=Z(Z'Z)-'Z'. 
Standard regularity conditions (e.g., White 1984) imply the following (where all 

limits are taken as T -> oo): 

p 
C.1: T-1X'Z -> Mz, a matrix of finite constants with rank n; 

p 
C.2: T- 'Z'Z -> MZ a matrix of finite constants with rank k; 

C.3: T' Zu ~N(O, oMZZ). 
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Each of these conditions places a different requirement on the asymptotic behavior 
of the instruments. Condition C.1 specifies instrument relevance: At a minimum, at 
least n of the k instruments must each have some unique explanatory power for the 
regressors, and each regressor must be correlated with at least one instrument. C.2 
requires that the instruments be linearly independent. Finally, C.3 requires that the 
cross-product Z'u converge to a normal distribution when scaled by T-1/2; the 
mean of this distribution is zero, so C.3 will hold only if the instruments are 
exogenous. 

Provided these conditions hold, the asymptotic distribution of /3 is given by 

(3) T1/2(/3-/3o)N(O,o2V), 

where 80 is the true value of /3 and V = (MXZ Mj M>Z)-1. This asymptotic 
distribution provides the basis for inference about the coefficient vector. For 
instance, one can test the set of linear restrictions Ho: W,30 = w (where W and w are 
q X n and q x 1 matrices of constants, respectively, with rank(W) = q) using the 
statistic 

(4) F= (WZw)I[W(XPzX) ww'] (W _-w)/6-2 

where r2 = (y -X1:)8(y-X:)/T. Under Ho, F is asymptotically distributed Xq 
The quality of inference about 030 depends crucially on the properties of the 

matrix of instruments. In practice, investigators often select their instruments from a 
large pool of candidates. Until recently, this choice has been guided largely by the 
requirement that the instruments be exogenous. Little attention has been paid to 
the properties of the moment matrix Z'X that underlies the relevance condition 
C.1. However, as described above, Nelson and Startz (1990a, b) and others have 
recently emphasized the problems that occur when the regressors are nearly 
uncorrelated with the instruments. In particular, in small samples, the IV estimator 
can display severe bias and its small-sample distribution can be very different from 
its asymptotic distribution. Consequently, the asymptotic distribution can be a 
misleading guide for inference. 

One can interpret these statistical problems as typical of those resulting from 
"nearly" unidentified parameters.3 To show this, note that the IV estimator can be 
obtained by minimizing 

(5) QT( 1) = U(18)'PZU(18) 

with respect to /3, where u( ,3) = y - X,3. Bowden and Turkington (1984, p. 36) show 
that 

(6) T1QT(/8) = ( /8-PO)'VT ( ,l3- 3o0) + oP(l) 

3Indeed, our test for instrument relevance described below is closely related to the test for 
identification in an IV framework given by Cragg and Donald (1993). 
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where VT = T(X'PzX)-1. This equation implies that 80 is identified only if V 
(which is the asymptotic limit of VT) exists and is positive definite, which is 
guaranteed, in part, by condition C.1. If the rank condition in C.1 is "close" to being 
violated in finite samples, then 80 is "close" to being unidentified and this would 
have an adverse effect on the distribution of the IV estimator. 

3. A CANONICAL CORRELATION ANALYSIS OF INSTRUMENT RELEVANCE 

While the above analysis links poor instrument quality to a near lack of identifica- 
tion, it does not provide a statistic to clearly measure the problem. We obtain such a 
measure by reexpressing the IV estimator and its associated statistics in terms of the 
canonical correlations between the regressors and the instruments. The underlying 
intuition of this analysis should be clear: instrument relevance depends on Z'X and 
the canonical correlations summarize a diagonalization of Z'X. 

Before reexpressing the IV estimator with canonical correlations, we briefly 
review some basic ideas behind canonical correlations that are important for our 
analysis. The canonical correlations {ri; i = 1, 2,.. ., n} between X and Z are defined 
to be the n nonnegative solutions to the determinantal equation4 

(7) det[X'(r2IT PZ)X] = 0. 

Order the correlations so that ri ri+ 1. Associated with each ri are two vectors a1 
and yi which are the solutions to the following equations 

(8) X' (ri2IT-PZ)Xai = 0 

(9) Z'(r7IT - ) Zyi = 0. 

The triples (ri, ai, yi) can be interpreted in terms of the correlations between linear 
combinations of the regressors (the columns of X) and the instruments (the 
columns of Z).5 The vectors a1 and zy maximize the sample correlation between 
Xa and Z-y. This first sample canonical correlation is rl. The vectors a2 and 72 

yield the linear combinations with the next highest correlation subject to the 
constraint that Xa2 and Z72 are orthogonal to Xa1 and Zy1. The correlation 
between Xa2 and Z72 is r2. Similarly, a1 and yi are the vectors which yield the j1th 

highest correlation, rj, subject to the constraint that Xaj and Zyj are orthogonal to 
{XaXi, Z^yi; i = 1, 2, . .., j - 1}. 

Let A be the (n X n) matrix with ith column ai and G be the (k X n) matrix with 
ith column yi. The IV estimator can be rewritten in terms of the sample canonical 
correlations between X and Z and the associated matrices A and G (Bowden and 

4 See Anderson (1984, Chapter 12). 
'The r2 can be easily calculated as the eigenvalues of (X'X)-1(X'Z)(Z'Z)-1(Z'X) with 

associated eigenvectors aj. The ri2 are also the nonzero eigenvalues of (Z'Z)- 1(Z'X) 
(X'X)-1(X'Z), and the associated eigenvectors are y. 
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Turkington, 1984, pp. 29-32): 

(10) 1 = (G'Z'X) G'Z'y 

(11) VT=AA-2A' 

where An = diag(r1, r2, .. ., rn). Equation (10) makes clear that the conventional IV 
estimator with k instruments (with k > n) is equivalent to an IV estimator that 
simply uses the n canonical variates {Zyi} as instruments. Equations (6) and (11) 
imply that , is identified only if all the canonical correlations converge to nonzero 
limits. In fact, convergence to nonzero limits is guaranteed by C.1 because 

(12) A'X'ZG = An 

where A is nonsingular (even if one or more of the canonical correlations are zero) 
and the rank of G is equal to n. This logic leads us to suggest that Z be defined as a 
matrix of low relevance or poor quality instruments when at least one of the 
canonical correlations between X and Z is close to zero.6 Accordingly, a diag- 
nostic test for instrument relevance is to examine the statistical significance of the 
smallest ri. 

A substantial literature on methods for testing canonical correlations already 
exists (e.g., Anderson 1984, Chapter 12). For convenience, we summarize the 
pertinent results in the following proposition: 

PROPOSITION 1. Assume that (xt, z)', t = 1, .. ., T, form a sequence of indepen- 
dent normal random vectors with mean 0 and covariance matrix .7 Let { pi; i= 

1,2... n) be the population canonical correlations between xt and zt, with pi 2 pi+1 The 
likelihood ratio statistic of Ho: Pj+1 = Pj+2 

= ... = 0 is 

n 

(13) LR -T E log(1-r72), 
i=j+ 1 

where the ri are the sample canonical correlations.8 Under Ho, LR is asymptotically 
distributed XV2, where v = (k -j)(n -j). 

To assess instrument relevance, we propose using the LR statistic with j = n -1, 
which tests whether the smallest canonical correlation equals zero (that is, 

6 The connection between canonical correlations and explanatory power has been recognized for 
some time. Hooper (1959, 1962) proposed using canonical correlations as a basis for extending R2 
to simultaneous equation models. 

7For our purposes, it is sufficient to maintain these strong distributional assumptions. However, 
the distributional result can be proved under much weaker conditions; see Robinson (1973). 

8Fujikoshi (1974) demonstrated that LR is the likelihood ratio statistic. Slight modifications to 
the LR statistic that are intended to have better finite-sample performance have been proposed by 
Bartlett (1947), Lawley (1959), and Glynn and Muirhead (1978); however, in our simulation study, 
the finite-sample behavior of the LR test appears quite good, and we do not consider these 
modifications. 
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Ho: pn = 0). In the single-regressor-single-instrument case, which is the focus of our 
simulation analysis, this LR statistic is given by 

(14) CF=-Tlog(1-r2), 

where r2 is simply the squared correlation between (the scalars) x, and z. This 
statistic is asymptotically distributed X2 

Nelson and Startz (1990a) suggest that if Tr2 is less than 2, then the instrument 
may be of such low relevance that inference about the regression parameter will be 
distorted. Note that if r2 is small then CF Tr2, so the Nelson-Startz measure is 
approximately the likelihood-ratio statistic. However, from the likelihood-ratio per- 
spective, the Nelson-Startz critical value of 2 is at about the 84th percentile of the 
X1 distribution, which implies a test with a 16 percent significance level. 

4. SIMULATION DESIGN AND INITIAL RESULTS 

The data generating process for our Monte Carlo experiments has two elements: 

(1) A structural equation: 

yt =xt 130 + ut, t = 1... J, 

(2) a joint stochastic process for the structural innovation, ut, the regres- 
sor, xt, and the instrument, zt: 

Ut O.U 

Xt N(O, Q) IQ =O(XE X * O.. 

Zt CZ , axz CZ C~Z 

All variables are scalars, and there is no temporal dependence. The three variances, 
2 2 v.a2, nraieto n. 

au2, ax2, and Z are normalized to equal one. We only consider instruments that 
are exogenous; thus, the covariance between the instrument and the structural 
innovation, azu, is set equal to zero. We vary ax, which controls the endogeneity of 
the regressor, and ax, which controls the relevance of the instrument, and explore 
the consequences for inference with the IV estimator, I3.9 For all of our simulations, 
IBM = 0. When examining the quality of inference with f3, we consider the empirical 
size of the t-statistic of the null hypothesis that 80 = 0. All results are based on 
10,000 samples, each with T = 100 observations. 

Table 1 reports our initial set of results. The first column shows the setting of oxz; 
instrument relevance ranges from none (uxz = 0.0) in the first block to fairly good 

9 One advantage of our set-up relative to some others that have been used in the literature is that 
we can vary the instrument relevance without altering any aspect (point estimate or variance matrix) 
of the OLS estimate of I30. 
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TABLE 1 

THE CONSEQUENCES OF INSTRUMENT QUALITY ON THE DISTRIBUTIONS OF fB, tstat(fl), AND ( 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 
Estimated fractiles of f3 Size Median Fractions of ( greater than 

'RXZ O-XU 0.05 0.50 0.95 of tstat( (D 1 c.v.(0.10) c.v.(0.01) 

0.0 0.0 - 6.736 0.004 6.379 0.001 0.465 0.101 0.009 
0.0 0.1 -6.106 0.119 6.786 0.002 0.461 0.100 0.009 
0.0 0.2 - 5.583 0.224 6.579 0.004 0.460 0.101 0.010 
0.0 0.3 -5.541 0.310 6.143 0.009 0.469 0.100 0.010 
0.0 0.4 -5.239 0.398 5.856 0.018 0.467 0.097 0.010 
0.0 0.5 -5.025 0.491 5.897 0.033 0.461 0.097 0.010 
0.0 0.6 -4.755 0.585 5.488 0.064 0.463 0.099 0.010 
0.0 0.7 - 3.957 0.689 5.448 0.108 0.458 0.101 0.010 
0.0 0.8 - 2.762 0.797 4.696 0.182 0.454 0.102 0.010 
0.0 0.9 - 1.834 0.897 3.663 0.321 0.459 0.101 0.010 

0.1 0.0 -3.909 -0.003 3.856 0.005 1.095 0.268 0.055 
0.1 0.1 - 4.062 0.042 3.986 0.006 1.103 0.268 0.056 
0.1 0.2 -4.068 0.086 3.976 0.010 1.115 0.266 0.055 
0.1 0.3 -4.172 0.126 4.013 0.019 1.119 0.267 0.056 
0.1 0.4 - 3.970 0.168 4.031 0.030 1.100 0.268 0.054 
0.1 0.5 - 3.756 0.206 4.016 0.049 1.110 0.264 0.055 
0.1 0.6 - 3.676 0.248 4.279 0.076 1.120 0.267 0.056 
0.1 0.7 - 3.772 0.274 4.185 0.107 1.133 0.266 0.057 
0.1 0.8 -3.540 0.295 4.269 0.153 1.132 0.266 0.057 
0.1 0.9 - 3.885 0.303 4.670 0.199 1.139 0.267 0.055 

0.2 0.0 - 1.288 -0.002 1.248 0.019 4.094 0.650 0.294 
0.2 0.1 - 1.381 0.004 1.170 0.023 4.090 0.648 0.292 
0.2 0.2 - 1.465 0.009 1.095 0.029 4.110 0.648 0.290 
0.2 0.3 - 1.580 0.013 1.012 0.039 4.112 0.648 0.290 
0.2 0.4 - 1.699 0.017 0.926 0.053 4.111 0.649 0.291 
0.2 0.5 - 1.854 0.020 0.840 0.070 4.141 0.651 0.290 
0.2 0.6 -2.027 0.023 0.760 0.087. 4.143 0.650 0.288 
0.2 0.7 -2.171 0.026 0.677 0.104 4.152 0.652 0.290 
0.2 0.8 -2.385 0.026 0.606 0.119 4.158 0.650 0.292 
0.2 0.9 -2.549 0.029 0.539 0.133 4.191 0.649 0.291 

0.3 0.0 - 0.654 0.000 0.659 0.047 9.454 0.926 0.695 
0.3 0.1 -0.697 0.000 0.618 0.046 9.456 0.927 0.696 
0.3 0.2 -0.743 0.001 0.579 0.053 9.515 0.927 0.696 
0.3 0.3 - 0.791 0.000 0.545 0.059 9.513 0.927 0.695 
0.3 0.4 -0.851 0.000 0.511 0.068 9.516 0.928 0.695 
0.3 0.5 -0.911 0.000 0.483 0.075 9.521 0.928 0.695 
0.3 0.6 - 0.968 0.001 0.453 0.085 9.534 0.926 0.696 
0.3 0.7 - 1.035 0.002 0.424 0.095 9.536 0.926 ,0.696 
0.3 0.8 - 1.102 0.001 0.399 0.106 9.585 0.925 0.697 
0.3 0.9 - 1.135 0.002 0.375 0.114 9.582 0.926 0.698 

0.4 0.0 - 0.455 0.001 0.454 0.071 17.443 0.995 0.951 
0.4 0.1 -0.477 0.001 0.434 0.069 17.500 0.995 0.950 
0.4 0.2 -0.499 0.001 0.416 0.070 17.552 0.995 0.950 
0.4 0.3 -0.522 0.001 0.398 0.074 17.556 0.996 0.950 
0.4 0.4 -0.546 0.001 0.381 0.076 17.540 0.995 0.951 
0.4 0.5 -0.574 0.001 0.364 0.080 17.510 0.995 0.950 
0.4 0.6 -0.600 0.000 0.346 0.083 17.584 0.995 0.951 
0.4 0.7 -0.620 -0.000 0.331 0.089 17.617 0.995 0.950 
0.4 0.8 -0.645 0.000 0.316 0.096 17.626 0.995 0.951 
0.4 0.9 -0.666 0.003 0.301 0.099 17.631 0.995 0.950 
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(o-Z = 0.4) in the last block. The second column shows the extent of the endogeneity 
of the regressor, which varies within each block from no endogeneity (or, = 0.0) to 
very high endogeneity (o-r = 0.9).1o The next three columns describe the empirical 
distribution of f3 with its median and 5 percent and 95 percent fractiles. Column 6 
reports the empirical size of the two-sided t-statistic of the null hypothesis that 
,80 = 0, which is denoted tstat(,B)* The nominal size of this test is set at 10 percent, 
so column 6 reports the fraction of all repetitions where the absolute value of 
tstat(,8f) is greater than 1.66. The last three columns provide summary statistics on 
the empirical distribution of the CF statistic. Column 7 provides the median value of 
CF, and columns 8 and 9 give the fraction of CF statistics exceeding the critical 
values associated with the 10 percent and the 1 percent significance levels, denoted 
c.v.(0.10) and c.v.(0.01), respectively." In the first block of the table, where -rz = 0, 
the entries in the last two columns provide the empirical size of CF for the hy- 
pothesis that o-rz = 0; in the blocks below, where o>rz > 0, they give the power of CF. 

The upper blocks of the table illustrate the phenomenon highlighted by Nelson 
and Startz: when the instrument has very low or no relevance, conventional tests of 
the significance of f3 can be badly missized. Our table highlights that the Nelson- 
Startz problem arises only when the correlation between the regressor and the 
disturbance term is high. For example, when o-,z= 0 and o-,, = 0.9, the t-statistic for 
,3 exceeds the critical value associated with the 10-percent significance level in 32.1 
percent of the repetitions. The problem becomes less severe as o-,z increases; once 
o-,z is as high as 0.3, the problem essentially disappears. As an aside, we note that a 
different problem emerges when o-,r and o-rz both are low. In this circumstance, 
the t-test for f3 rejects much too infrequently.. 

The results in Table 1 suggest that the Nelson-Startz phenomenon reflects, in 
part, bias in the IV estimate of 130: As shown in the fourth column, the median IV 
estimate is biased upward when o-rz is low and or-u is high, and this bias disappears 
as o-az rises.12 

Now let us consider the behavior of the CF statistic. Inspection of the last two 
columns in the uppermost block of the table suggests that the CF statistic is well 
sized; at either significance level, the test rejects the null hypothesis of no correla- 
tion between x and z about the right number of times. The entries in the lower 
blocks of these columns show that the power of the test rises fairly rapidly as a 
function of o-, 

Casual examination of Table 1, especially columns 1, 6, and 7, suggests that using 
the (D statistic to judge the reliability of inference with IV estimates may be 
beneficial. Indeed, this is precisely how others in the literature have interpreted 
similar evidence. When o-rz is low, the t-statistic on f3 is generally missized and the 
median value of CF is low. When o-rz is high, the t-statistic on f3 is appropriately 
sized and the median value of CF is high. However, Table 1 is essentially uninforma- 

10 Note that to guarantee that fl is positive definite, o,-, and orXU must satisfy 1- - 

( CRX )2 > o. 

f These critical values are 2.71 and 6.635, respectively. 
12 This finding is consistent with the analytical result of Sawa (1969), who showed that the IV 

estimate of ,0 is biased in the same direction as the OLS estimate (though of course the IV 
estimate is consistent, except when o-,, = 0). 
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tive about the consequences of using the CF statistic to choose among different 
instrument sets. Such a screening procedure requires knowledge of the distribution 
of tstat( A3) conditional on the value of CF. Such knowledge is developed in the next 
section. 

5. A CAVEAT ABOUT SCREENING INSTRUMENTS FOR RELEVANCE 

Here we examine the usefulness of the (D statistic as a pre-estimation screening 
test for instrument relevance. Our examination is based on the following scenario: 
suppose that a researcher has access to an unlimited number of candidate instru- 
ments, and selects one of them by calculating the CF statistic for each of the 
available instruments sequentially until he finds one with a (D statistic that exceeds 
some given critical value. The researcher then conducts inference on the basis of the 
second-stage (structural) IV estimates associated with this high-(D instrument. Intu- 
ition suggests that such a procedure might be subject to problems along the lines of 
the generic pretest bias that results from winnowing out insignificant regressors and 
letting remain only the significant ones. The results of this section corroborate this 
intuition. 

This conclusion is based on the evidence given in Table 2. As before, the first two 
columns give the settings of a,, and a, . The third column is repeated from Table 
1, and gives the empirical size of tstat( f) (with a nominal size of 10 percent) 
calculated using all Monte Carlo samples. Columns 4 and 5 then present the results 
of using the CF statistic as a pre-estimation screening test at the 10 percent 
significance level. Column 4, which is also repeated from Table 1, shows the fraction 
of all 10,000 samples in which the CF statistic exceeds the relevant critical value; 
given that the Monte Carlo samples are independent of one another, this fraction 
can also be interpreted as the probability that the researcher will calculate a 
significant value of the CF statistic for any given instrument as he proceeds sequen- 
tially down the list of candidates. Column 5 gives the empirical size of the 
conventional t-test conditional on a significant value of the (D statistic; this is 
calculated by discarding all Monte Carlo samples with insignificant CF statistics and 
then computing the fraction of the remaining samples with significant t-statistics. 
The remaining two columns report the similar results from using the (D statistic as a 
screening test at a 1 percent significance level. 

Application of the screening test in this manner appears to have very undesirable 
consequences. Specifically, in those circumstances in which the Nelson-Startz phe- 
nomenon was a concern (low axo, high oxu), application of the screening test only 
exaggerates the problem. Consider, for example, the case in which ax, = 0.1 (low 
relevance instrument) and xo = 0.9 (highly endogenous regressor). If the researcher 
does no screening and simply uses the first instrument available, the empirical size 
of tstat( fi) is 19.9 percent. If the (D test is used to screen instruments at the 10 
percent level, there is only a 26.7 percent chance that any given instrument will be 
judged to be sufficiently relevant. However if an instrument is judged relevant, there 
is a 53.9 percent chance that the t-statistic will exceed the usual 10 percent critical 
value. Unfortunately, the problem is made even worse by applying the (D screening 
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TABLE 2 
THE EMPIRICAL SIZE OF THE tstat( ,) IN HIGH-(I INSTRUMENT SAMPLES 

(1) (2) (3) (4) (5) (6) (7) 
All samples Samples with F > c.v.(0.10) Samples with F > c.v.(0.01) 

Size Fraction of Size Fraction of Size 

'X Z O'Xu of tstat( ,3) all samples of tstat( ,1) all samples of tstat( 15) 
0.0 0.0 0.001 0.101 0.011 0.009 0.043 
0.0 0.1 0.002 0.100 0.019 0.009 0.053 
0.0 0.2 0.004 0.101 0.038 0.010 0.108 
0.0 0.3 0.009 0.100 0.087 0.010 0.210 
0.0 0.4 0.018 0.097 0.167 0.010 0.293 
0.0 0.5 0.033 0.097 0.274 0.010 0.480 
0.0 0.6 0.064 0.099 0.442 0.010 0.689 
0.0 0.7 0.108 0.101 0.616 0.010 0.853 
0.0 0.8 0.182 0.102 0.788 0.010 0.959 
0.0 0.9 0.321 0.101 0.958 0.010 1.000 

0.1 0.0 0.005 0.268 0.019 0.055 0.045 
0.1 0.1 0.006 0.268 0.023 0.056 0.054 
0.1 0.2 0.010 0.266 0.039 0.055 0.092 
0.1 0.3 0.019 0.267 0.069 0.056 0.139 
0.1 0.4 0.030 0.268 0.110 0.054 0.200 
0.1 0.5 0.049 0.264 0.169 0.055 0.293 
0.1 0.6 0.076 0.267 0.239 0.056 0.398 
0.1 0.7 0.107 0.266 0.317 0.057 0.552 
0.1 0.8 0.153 0.266 0.415 0.057 0.700 
0.1 0.9 0.199 0.267 0.539 0.055 0.895 

0.2 0.0 0.019 0.650 0.029 0.294 0.047 
0.2 0.1 0.023 0.648 0.035 0.292 0.056 
0.2 0.2 0.029 0.648 0.044 0.290 0.074 
0.2 0.3 0.039 0.648 0.060 0.290 0.096 
0.2 0.4 0.053 0.649 0.081 0.291 0.130 
0.2 0.5 0.070 0.651 0.106 0.290 0.165 
0.2 0.6 0.087 0.650 0.131 0.288 0.215 
0.2 0.7 0.104 0.652 0.155 0.290 0.267 
0.2 0.8 0.119 0.650 0.181 0.292 0.335 
0.2 0.9 0.133 0.649 0.204 0.291 0.420 

0.3 0.0 0.047 0.926 0.050 0.695 0.062 
0.3 0.1 0.046 0.927 0.050 0.696 0.061 
0.3 0.2 0.053 0.927 0.057 0.696 0.070 
0.3 0.3 0.059 0.927 0.063 0.695 0.078 
0.3 0.4 0.068 0.928 0.073 0.695 0.090 
0.3 0.5 0.075 0.928 0.081 0.695 0.101 
0.3 0.6 0.085 0.926 0.092 0.696 0.118 
0.3 0.7 0.095 0.926 0.102 0.696 0.134 
0.3 0.8 0.106 0.925 0.114 0.697 0.151 
0.3 0.9 0.114 0.926 0.123 0.698 0.164 

0.4 0.0 0.071 0.995 0.071 0.951 0.074 
0.4 0.1 0.069 0.995 0.070 0.950 0.072 
0.4 0.2 0.070 0.995 0.071 0.950 0.074 
0.4 0.3 0.074 0.996 0.074 0.950 0.077 
0.4 0.4 0.076 0.995 0.076 0.951 0.079 
0.4 0.5 0.080 0.995 0.080 0.950 0.084 
0.4 0.6 0.083 0.995 0.083 0.951 0.087 
0.4 0.7 0.089 0.995 0.090 0.950 0.094 
0.4 0.8 0.096 0.995 0.097 0.951 0.101 
0.4 0.9 0.099 0.995 0.099 0.950 0.104 
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test at stricter levels of significance: In the good-instrument samples screened at the 
1 percent significance level, the size of the t-test is 89.5 percent.13 

As noted by Nelson and Startz (1990a), the size distortion of the t-statistic with a 
low-relevance instrument reflects biases both in f3 and in & , two of the component 
elements of tstat( 13). From results not shown, it appears that the additional size 
distortion in the screened high-( samples is attributable to both greater overestima- 
tion of f3 and greater underestimation of A . Overall, the deterioration in perfor- 
mance apparently reflects the fact that, given the high population correlation 
between x and u, a high sample correlation between x and z is associated with a 
high sample correlation between z and u; that is, the spuriously high relevance of 
the instrument is associated with a spuriously high endogeneity of the instrument. 

Clearly, the investigator above is worse off for using the (D statistic in a screening 
test, in the sense that the size of the t-test is more distorted after screening than it is 
in the absence of any screening. In fact, an ironic aspect of the scenario is that the 
researcher would be better off reversing the test and estimating the structural 
relation using the first instrument with a (D statistic less than the 10 percent critical 
value. In the case in which ox, = 0.1 and ox = 0.9, the empirical size of the 
t-statistic would be a somewhat conservative 7.5 percent.14 To be clear, however, we 
are not recommending the inverse (D screening test as an alternative pre-estimation 
test. Instead, we advise against using any such pre-estimation test. 

Even if the investigator is worse off using the CF statistic, given one particular 
setting of the underlying parameters (e.g., ox-, = 0.1 and o-xu = 0.9), Table 2 makes 
clear that there exist other parameter settings for which the investigator would be 
better off using the CF statistic. For example, if ox-, = 0.1 and o-xu = 0.4, the size of 
the t-statistic in the screened samples is 11 percent-much better than the 3 percent 
obtained in the unscreened samples. Furthermore, there exist other cases (e.g., 
rXZ= 0.4 and oxu = 0.1) in which the t-statistic in the screened samples is almost 

exactly the same size as the t-statistic in the unscreened samples.15 The investigator's 
problem is that it is difficult to recognize which of these situations obtains-one in 
which screening by the (D statistic would degrade the quality of inference, improve 
it, or have essentially no effect. Thus, we see little scope for successful application of 
a screening procedure such as the one we examine here. 

It might appear that the above scenario is rigged against the (D screening test 
because it only allows the researcher to select among instruments that are all equally 
bad. The results in Table 2 can also evaluate a scenario in which the investigator has 
access to instruments of varying quality-some good, some bad. Could the (D 
screening test have value in steering the researcher away from low-relevance 
instruments and toward high-relevance instruments? 

Suppose that ,0 = 0 and o-Ju = 0.9, and that the value of ax, is random, with 
probability density function I(axz). It is not difficult to find cases in which the 

13 Application of the '1 test does alleviate the under-sizing of the t-test in those cases in which ouz 
and o>,u both are low; however, the improvement on this margin seems slight compared with 
the exaggeration of the Nelson-Startz phenomenon. 

14 This is calculated from Table 2 as [0.199 - (0.267 x 0.539)]/(1 - 0.267). 
15 This result is not surprising given that, when ouz = 0.4, the estimated value of '1 exceeds the 

critical value for the test with nominal size of 10 percent in almost every case. 
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quality of inference is impaired or improved by application of a screening proce- 
dure.'6 For example, let (o- = 0.1) = (o= 0.3) = 0.5, so there is an equal 
chance of obtaining a low- or high-relevance instrument. Then the likelihood of 
incorrect inference without any screening (taking only one draw on the instrument) 
is 15.7 percent.'7 In contrast, the likelihood of incorrect inference with screening 
based on the FP statistic (taking the first instrument draw with FP > c.v.(0.10)) is 21.6 
percent.'8 In this case, structural inference is impaired by use of the FP statistic. On 
the other hand, with d(o- 0.0) = w(o-a = 0.3) = 0.5, the structural inference is 
modestly improved by use of the D-based screening procedure (21.8 percent versus 
20.5 percent). 

In the absence of clear information about o-, the pre-estimation screening test 
for instrument relevance appears to be of limited value because FP alone is an 
ambiguous signal of the distribution of the t-statistic for f3. If one observes a high 
value of FP, there are two possibilities. It may be that ac is indeed high, tstat( /3) is 
well sized, and the high reading of FP signals that inference about FP is reliable. On 
the other hand, it may be that o,- is low, tstat( /3) is severely missized, and the high 
reading on FP signals a particularly pathological sample realization. In essence, the 
conditional distribution of tstat( /3), given FP, depends on the nuisance parameter 
ax, whose unobservability is, of course, the crux of the problem. 

6. ASSESSING INSTRUMENT RELEVANCE WITH A GIVEN INSTRUMENT SET 

In the previous section, we examined the problems of choosing among instrument 
sets on the basis of the observed FP and found no clear benefits to such a procedure. 
Here, we consider the use of the FP statistic by a researcher faced with a single given 
instrument set. 

Could the FP statistic have value if it is used to prevent inference from being 
conducted? Suppose the researcher is allowed to consider only one variable as an 
instrument (and again assume o-x = 0.9 and axu = 0.1). If the researcher does not 
consult the F statistic, then there is a 19.9 percent probability of incorrect inference 
and an 80.1 percent probability of correct inference.19 In contrast, if the researcher 
conducts inference only if the instrument appears to be significantly correlated with 
the regressor, then there is a 14.4 percent probability of incorrect inference, a 12.3 
percent probability of correct inference, and a 73.3 percent probability that no 
inference will be made.20 From a decision-theoretic standpoint, if the loss from 

16 Indeed, the previous example can be viewed as a degenerate case in which 7r(o-9,) had point 
mass equal to one at ouxZ = 0.1. 

17 This equals Prob[Itstat( ,3)1 > 1.66o1z = 0.1] X Prob[o-,z = 0.1] + Prob[Itstat( ,3)1 > 1.66I1oa = 

0.3] x Prob[oaz = 0.3] or (0.199 x 0.5) + (0.114 X 0.5). 
18 This equals Prob[Itstat( '3) > 1.66I1oz 0.1, cD > c.v.(0.10)] X Prob[o-,z = 0.1, c1 > c.v.(0.10)] + 

Prob[Itstat( l3)l > 1.66I1o-z = 0.3, c1 > c.v.(0.10)] X Prob[o-,z = 0.3, cD > c.v.(0.10)] or 0.539 x 
(0.267/(0.267 + 0.926)) + 0.123 x (0.926/(0.267 + 0.926)). 

19 These are, of course, defined as Prob(Itstat(,l3)1> 1.66) and Prob(Itstat( 3)1 <1.66), respec- 
tively. 

20 These are Prob(Itstat(,83)l > 1.661(D > c.v.(0.10)) X Prob(@1 > c.v.(0.10)) = 0.539 x 0.267, 
Prob(Itstat( ,3)1 < 1.6614D > c.v.(0.10)) X Prob(ND > c.v.(0.10)) = (1 - 0.539) x 0.267, and Prob(ND < 

c.v.(0.10)) = (1 - 0.267), respectively. 
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incorrect inference is much greater than the loss from no inference at all, it might 
appear that the (D screening test could have some value. However, application of the 
inverse (D screening test again does even better in this case. If the researcher 
conducts inference only if (D < c.v(0.10), then there is only a 5.5 percent probability 
that incorrect inference will be made, a 67.8 percent probability that correct 
inference will be made, and a 26.7 percent probability that no inference will be 
made.2' 

A similar result holds if one assumes that the researcher is presented with one 
instrument of unknown relevance that has an even chance of being good or bad. 
Specifically, suppose that ,0 = 0, oax = 0.9, and I(o> = 0.1) = v(o-, = 0.3) = 0.5. 
As before, if the (D statistic is not consulted, the probability of incorrect inference is 
15.6 percent. If the (D statistic is used with a 10 percent significance level, the 
probability of incorrect inference is 12.9 percent, the probability of no inference is 
40.3 percent, and the probability of correct inference is 46.8 percent. Again, this 
procedure can be advantageous only if the loss from incorrect inference is much 
higher than the loss from no inference. In general, it does not appear that the (D 
statistic can make a clear contribution with this procedure. 

7. CONCLUSION 

Several recent papers have suggested that practitioners examine the R2 or 
F-statistic from the first-stage regression of regressors on instruments as a means of 
guarding against the hazards of conducting inference with instruments that are only 
weakly correlated with the regressors. We have provided a general framework for 
formalizing and analyzing this recommendation. Unfortunately, our simulation re- 
sults indicate that the use of pre-estimation tests can actually exacerbate the 
problems of inference. 

On a constructive note, recent research has provided what appear to be well- 
founded, positive recommendations to researchers facing the possibility of low- 
relevance instruments. For example, Staiger and Stock (1994) suggest that the 
researcher not rely on asymptotic theory at all, but rather construct small-sample 
confidence intervals for ,0 that take into account the sample correlation between 
regressors and instruments. Their analysis is related to our own; indeed, one of the 
statistics that they use to assess the small-sample bias in ,3 is precisely a multiple of 
the minimum squared canonical correlation (the B2, max statistic, in their notation). 
Expressed in our notation, their procedure has several steps: (1) construct a 
confidence interval for ao- based on (D, (2) describe a likely range for oax and 
(3) construct a confidence interval for ,0 based on the small-sample behavior of 13, 
given ao and a Staiger and Stock provide some evidence of the desirable 
properties of their procedure with both a Monte Carlo experiment and a practical 
example. 

21 These are Prob(Itstat( 3)1 > 1.661(D < c.v.(0.10)) x Prob(ND < c.v.(0.10)) = [0.199 - (0.267 x 
0.539)1/(1 - 0.267) x (1 - 0.267), Prob(Itstat( '3)1 < 1.661(D < c.v.(0.10)) x Prob(@1 < c.v.(0.10)) = 
(1 - 0.075) x (1 - 0.267), and Prob(ND > c.v.(0.10)) = 0.267, respectively. 
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Angrist and Krueger (1995) advocate a different approach for the applied re- 
searcher. Rather than trying to account for the distortions in the small-sample 
distribution of the usual IV estimator in the presence of low-relevance instruments, 
Angrist and Krueger construct alternative instrumental variables estimators that are 
not as biased in small samples as the usual IV estimator. For example, one of their 
proposed estimators is a split-sample IV estimator. This estimator uses one sub-sam- 
ple of the data to estimate the first-stage IV regression, and then uses those 
estimated parameters to construct fitted values and second-stage parameter esti- 
mates from the remaining data. These separate estimation samples eliminate the 
potential for spurious correlations that plague the usual IV estimator. Angrist, 
Imbens, and Krueger (1995) provide more sophisticated estimators that are based on 
the same principle. 

To summarize our recommendation then, we would strongly disapprove of the 
simplistic use of measures of instrument relevance in the ways described in the 
Introduction. However, these measures may aid in inference using Staiger and 
Stock's more sophisticated techniques. Furthermore, as a complementary technique, 
the new IV estimators suggested by Angrist and Krueger, which are particularly 
appropriate in cross-sectional studies, should be considered. 

North Carolina State University, U.S.A. 
Federal Reserve Bank of San Francisco, U.S.A. 
Board of Governors of the Federal Reserve System, U.S.A. 
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