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RECENT EMPIRICAL RESEARCH on investment has focused on 
the estimation of the stochastic first-order conditions, or Euler equations, from dy- 
namic models derived under rational expectations. Because these models have an 
explicit structural interpretation, they are theoretically more appealing than tradi- 
tional models of investment. However, the empirical performance of Euler-equation 
models has not been tested against the traditional models. This paper performs such 
a test by adding two Euler equations to the usual group of traditional investment 
models examined in previous studies namely, the accelerator, neoclassical, mod- 
ified neoclassical, and Q-theory models. 1 

The first of our two Euler equations is a "canonical'7 model that typifies the equa- 
tions estimated in recent years.2 Despite its popularity, this canonical model has a 
restrictive dynamic structure that is unlikely to capture the time lags inherent in the 
investment process. In contrast, our second Euler equation explicitly accounts for 
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the lag between the start of an investment project and the later date at which the new 
capital begins to contribute to the firm's production. By embedding such "time-to- 
buildS' lags, which were emphasized by Kydland and Prescott (1982), this equation 
has a richer structure than most previous investment Euler equations.3 

This paper focuses on the ability of the various models to forecast investment in 
equipment and in nonresidential structures. From a practical standpoint, such out- 
of-sample tests are needed to determine which models have the most value as fore- 
casting tools. Moreover, beyond this practical objective, out-of-sample performance 
is a powerful test of model specification (see, for example, Hendry 1979). We con- 
duct two sets of tests. The first set of tests examines the size, bias, and serial correla- 
tion of the modelsS one-step-ahead forecast errors, similar to the out-of-sample tests 
performed by Kopcke (1985) and Clark (1979). In addition, we compare the infor- 
mation content of model forecasts by regressing actual investment on predictions 
from pairs of modelss Fair and Shiller (1990) have argued that such regressions pro- 
vide a powerful test of alternative models. 

To summarize the results, we find that the Euler equations produce extremely 
poor forecasts of investment for both equipment and nonresidential structures. The 
time-to-build version of the Euler equation outperforms the basic Euler equation in 
our tests, but the improvement is modest. All the Euler equations have mean 
squared forecast errors many times larger than those of the traditional models. 
Moreover, the Fair-Shiller tests suggest that, as a group, the traditional models for 
equipment dominate the Euler equations; for nonresidential structures, the Fair- 
Shiller tests show that neither the Euler equations nor the traditional models have 
any forecasting ability. 

The paper is organized as follows. The next section describes the models in our 
horse race, while section 2 briefly discusses our data set. Section 3 presents full- 
sample estimates of each model, in order to gain some initial information on their 
relative fit. Section 4 documents that the Euler equations produce relatively poor 
forecasts, and section 5 attempts to explain why this is so, arguing that the standard 
assumptions that underlie these equations could be to blame. Section 6 concludes 
the paper and suggests areas for future research. 

l. THE INVESTMENT MODELS 

A. Two Investment Euler Equatzons 
To derive our Euler equations of investment spending, we adopt several assump- 

tions that are fairly standard in the literature: 
* The firm's production function is Cobb-Douglas with constant returns to scale 

Yt = F(Kt_ 1 aLt) = AKto- ILt 1 - o) , ( 1 ) 

3. Relatively few researchers have estimated structural time-to-build models of investment. This work 
appears to be limited to Chirinko and Schiantarelli (l991), Altug (1989), Rossi (1988), and Park (1984). 
For recent theoretical work on time-to-build models, see Altug (1993). 
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where Yt and Lt are output and employment during period t, and Kt_ 1 is the capital 

stock at the end of period t-1. The marginal product of capital is 

FK,-AYt+ l/8Kt = OYt+ 1/Kt 
(2) 

* Capital is a quasi-fixed factor subject to the usual quadratic adjustment costs, 

while employment is assumed to be a variable factor. Let It denote gross investment 

during period t. Then, the adjustment cost function is 

C(It Kt_ 1 ) = [oto(ItlSt- 1 ) + (°t112)(ItlSt_ 1 )2]Kt_ 1 .4 (3) 

The partial derivatives of C(It, Kt_ 1) are 

Cl, = otO + °tlIKt and CK, l =-((xl12)IKt2, (4) 

where IKt-ItlSt_ 1. For the firm's investment decision to be well defined, CZ must 

be increasing with the level of investment; that is, ACZ I AIt = ° l lSt_ 1 must be great- 

er than zero, implying that (xl > O. We have no prior on the sign of (xO. 

* All markets are perfectly competitive, implying that the price of output, the 

price of capital goods, and the wage rate are exogenous. We normalize both input 

prices by the price of output (Pt) and denote the resulting real price of capital goods 

and real wage by pl and wt, respectively.5 

* The firm's discount rate is exogenous, so that financing decisions are irrelevant 

for the optimal investment path. We denote the firm's time-varying discount rate by 

rt and the corresponding discount factor by St = 1/(1 + rt). 

* There is only one type of capital, with a constant depreciation rate of b. As 

discussed below, we relax this assumption in our empirical work by estimating sepa- 

rate equations for equipment and nonresidential structures.6 

* Investment projects are subject to time-to-build lags, where our specification of 

these lags follows Taylor (1982). Let St denote the value of projects started in period 

t. All projects take X periods to complete, so that additions to the capital stock in 

period t equal project starts in period t-v. The equation of motion for the capital 

stock is then 

Kt=(l -a)Kt-l +St-T- 
( ) 

4. If, instead, we were to specify a more general adjustment cost function that included interactions 

between fixed capital and employment, the investment Euler equations would include terms for the 

change in employment. However, these terms would introduce information into the Euler equations that 

IS absent from the traditional models, undercutting our aim to compare limited-information models of 

nvestment. 

5. The assumption of perfect competition in output markets could be relaxed and indeed has been in 

other work on investment Euler equations. However, because the neoclassical and Q models that we 

estimate assume perfect competition, we make this assumption when deriving the Euler equation to en- 

force a degree of consistency across models. 

6. To simplify the notation, we also ignore the role of taxes in this section. However, corporate tax 

provisions are incorporated in our empirical measure of the price of capital goods. 
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Further, let 'ti denote the proportion of the project's total value that is put in place 
i periods after the start, with ¢0, . . ., XT ' O and Li=o Xi = 1. Thus, It equals the 
value put in place during period t from all projects underway at that time: 

It = 2> XiSt- i (6) 
i=o 

Given this setup, we assume that the firm maximizes the expected present value 
of real future profits, 

G 

Vt = Et t E 13tts rrs (7) 
s =t 

where t*s = rl/5=t+ 1 g8j iS the discount factor from period s back to period t and 

79 = F(K, ,, Ls)-C ( E XiSs i Ks , ) -WsLs-P' ( E iSs i) (8) 

(using equation (6) to represent Is) Real profits equal revenue minus adjustment 
costs, labor costs, and the cost of purchasing new capital. Firms maximize (7) by 
choosing Ssv Ksv and Ls for all s ' t, subject to equation (5), the capital-stock con- 
straint. To carry out this maximization, we define the Lagrangian 

50 

-E 0 E * ( -A (K -(1 -8)K -S )) 1 (9) 
t t L t,s gS S S S-] S-T 

s=t 

Setting @ttl@A:s = for all s, with xs = (SsS Ks Ls)v yields a set of first-order condi- 
tions for each value of s. The two conditions needed to derive the Euler equation are 

T 

St: E XiEt(t t+i(Pt+i + CI,; i)) Et(t t+TAt+T) (10) 
i=o 

Kt+T Et(tet+T+ }(FK,t T CKt+T)) Et(t t+TAt+ (1 8)t t+T+ 1 At+T+ I ) * (1 1) 

At the optimal level of starts, equation (10) says that the expected cost of acquir- 
ing and installing capital goods over the next X periods (PZt+i + C/t+is for i = 
O, . . ., v) equals the expected shadow value of the marginal addition to the capital 
stock when the project comes on line (At+T). Both the cost of the project and its 
shadow value are discounted back to period t in this comparison. Equation (11) re- 
lates the shadow value of capital to its expected marginal return net of adjustment 
costs (FK CK ) 

To derive the Euler equation, combine equations (10) and (11) to eliminate the 
terms in A: 
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Et(t t+T+ I (FK,+T CK,+X)) E XiEt(tst+i(Pt+i + C,,+i)) 
i-o 

+ E (1 -8)+iEt(l3t*t+i+l(pt+i+l + C',+f+,)) ° (12) 
i=o 

Now, assume that expectations are rational and let et+i represent the expectational 

error for the terms in (12) dated at period t + i, with Et(et+i) = O. In additionb 

substitute the expressions for FK, CI, and CK from equations (2) and (4) into (12). 

Then, after some rearrangement, we obtain 

E i(Pt+i+l) + E tofi(At,t+i+l) + al(t,t+T+llKt+T+l/2) 
i=O i=O 

E Ct|(>if IK,+;+ I ) f) ( t,t+T+ I K ) E e,+E (] 3) 

where 

APt+i+, (1 8)t,t+i+ lPt+i+, tot+iPt+i 

t*t+i+l-(1-8)t*t+i+l-t*t+i 

i\IKt+i+ l-( 1-a)13t*t+i+ lIKt+i+ 1-t*t+iIKt+i 

Most variables enter the Euler equation in the quasi-differenced form indicated by 

the A symbol. Because we treat 8 and the * terms as data, all expressions in paren- 

theses in (13) can be computed prior to estitnation. This leaves X + 3 structural 

parameters to be estimated: (xO and (xl from the adjustment cost function, 0 from the 

production function, and +0, . . . , XT- l to account for time-to-build lags (we re- 

strict XT to equal 1-EiT-o Xi) 
The above Euler equation with time-to-build lags has a richer dynamic structure 

than is usually found in formal models of investment. The more typical specification 

arises as a special case of equation (13) when the time-to-build lag is zero: X = O, 

+0 = 1, and Xi = O for i > O. In this case, (13) reduces to a simpler and more 

familiar equation: 

(i\Pt+l) + Cto((l -8)13t+l - 1) + (xl (t2 ' IKt2+l + lSIKt+l ) 

+ 0 ( t+I K I ) = e+ l (14) 

where we have used the facts that t*t+l = t+l and t*t = 1. As shown, (14) is a 

linear equation in three structural parameters: (xOv (xl, and 0. We examine the fore- 
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cast performance of both the Euler equation with time-to-build lags [equation (13)] 
and the simpler version that omits time-to-build [equation (14)]. 

B. Four Traditional Modets of Investment 
Several well-known models of investment predate the Euler-equation approach: 

The Q model, the accelerator model7 Jorgenson's neoclassical model, and the mod- 
ified neoclassical model. Each of these models was analyzed in the comparative 
studies done by Clark (1979) and Bernanke, Bohn, and Reiss (1988). Our specifica- 
tion of each model is the same as in Clark (1979), except that we scale investment 
by the capital stock rather than by potential output. 

Our traditional Q model takes the form: 

N 

IKt= dJ + E (sQt-sJ (l5) 
s-O 

where QA is average Q, the ratio of the hrm's market value to the replacement cost 
of its capital stock. Equation ( 15), although often estimated in the literature, is not a 
structural model. If we ignore time-to-build lags, the structural Q equation implied 
by our framework is 

IKt=-°t0lal + (l/°tl)(^t-pt) =-(xO/(xl + (1/xl)Qt n (16) 

where the second equality replaces marginal Q(At - p') with average Q.7 As can be 
seen from (16), the structural Q equation from a standard dynamic framework ad- 
mits no role for lags of QA. These lags have been included by empirical researchers 
simply to improve the fit of the equation. The structural Q equation that emerges 
when we take into account time-to-build bears even less resemblance to equation 
(15) 8 Thus, we regard (15) as a reduced-form equation relating investment to prices 
in financial markets. 

For both the accelerator model and Jorgenson's neoclassical model, the invest- 
ment equation has the form: 

N 

It= 4s + 22 (R)s/\ff*-s + aKt-l, (17) 
s=O 

where K* is the firm's desired capital stock. In the accelerator model, the desired 
capital stock K* is assumed proportional to output Yt, so that /\Kt = 4Z\Yt. If we 
make this substitution for l\K* in equation (17), scale both sides of (17) by Kt_l, 
and add the random error ut, we obtain: 

7. To derive the first equality in (16), set X = O and 40 = 1 in equation (10) and use (4) to substitute 
for C,. The second equality follows from Hayashi (1982), who showed that average Q equals marginal Q 
under constant returns to scale and competitive markets. 

8. See Oliner, Rudebusch, and Sichel (1993) for details. 
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N 

IKt = 8 + + E @ks /_$ + Ut . (18) 

Kt- I '5'=° Kt- I 

In contrast, Jorgenson's neoclassical model sets the marginal product of capital in a 
Cobb-Douglas technology equal to its real one-period rental price (c), so that K* = 
0(YI(')t, and 

N 

IKt= 8 + + + E @ A(Y/C)t-s + U (19) 
t-I s = O t-- I 

Finally, the modified neoclassical model, originated by Bischoff (1971), relaxes 
the symmetric treatment of output and the rental price in the neoclassical model. 
Bischoff assumed that capital is "putty-clay": Firms can choose the factor propor- 
tions for each new vintage of capital, but this choice is irreversible once the vintage 
has been installed. As discussed more fully in Oliner, Rudebusch, and Sichel 
(1993), the putty-clay assumption implies the following investment equation: 

IK, = K + E 0@ls Kst t--9 + @2s ( )las I ] + Ut @ (20) 

The @2s coefficients in equation (20) are expected to be negative, while Ct) ,. and the 
distributed lag coefficients for the other traditional models are expected to be 

. . 

posltlve. 

2. DATA 

We estimate equations (13), (14), (15), (18), (19), and (20) with quarterly data for 
the aggregate private business sector in the United States. These data cover the peri- 
od 1952:1 to 1992:4. To estimate the traditional models, we require series for gross 
investment (I), capital stock (K), output (Y), the real user cost of capital (c), and 
average Q (Q). To estimate the Euler equations, we employ the same constant- 
dollar series for l, K, and Y, along with series for the real after-tax price of invest- 
ment goods (p') and the discount factor (A), and an assumed value for the deprecia- 
tion rate (8). Here, we briefly describe the data, while the appendix in Oliner, 
Rudebusch, and Sichel (1993) fully documents each series. 

Our constant-dollar series for output and gross investment are from the National 
Income and Product Accounts; because we estimate separate equations for pro- 
ducers' durable equipment and nonresidential structures, the investment data are 
disaggregated into these two categories. For each investment series, the correspond- 
ing capital stock is the annual constant-dollar net stock from the Bureau of Econom- 
ic Analysis, which we interpolate to a quarterly frequency. To construct the real user 
cost of capital (c) and the real after-tax purchase price of investment goods (pl), we 
follow the methodology in the Federal Reserve Board's Quarterly Econometric 
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Model. Our measure of average Q is based on the tax-adjusted formulation in Ber- 
nanke, BohnS and Reiss (1988). The quarterly discount factor for the Euler equa- 
tions is d = 1/(1 + r), where r is an unweighted average of the real interest rate on 
three-month Treasury bills and the real return on equity; we use a short-term interest 
rate to conform with the definition of @ as a discount factor between adjacent quar- 
ters. Finally, to estimate the Euler equations and to construct the user cost of capital 
for the traditional modelsS we set the quarterly depreciation rate (8) to 0.03784 for 
equiprnent and 0.01412 for nonresidential structures, the values employed by Ber- 
nanke, Bohn, and Reiss (1988). 

3. FULL-SAMPLE ESTIMATES OF THE INVESTMENT MODELS 

A. The TraditzonaZ Models 
Table 1 shows full-sample parameter estimates for the traditional investment 

models described in section 1. Each equation is estimated by ordinary least squares 
over the period 1955:2 to 1992:4, with all distributed lags allowed to be twelve 
quarters in length; we estimate these lags without constraints.9 

Except for the Q modelS the coefficients on the distributed lag terms in the equip- 
ment equations are strongly signiScant and of the expected sign, tracing out a hump- 
shaped distribution with a modal lag of three to four quarters. In contrast7 in the Q 
model, the only significant coefficient on the lags of QA is negative, contrary to our 
expectation. More generally, the Durbin-Watson statistic in each equipment equa- 
tion is below 0.5, a sign of highly autocorrelated errors. Clearly, these models all 
fail to capture some persistent determinants of equipment investment. 

For nonresidential structures, the performance of the traditional models is even 
less satisfactory. Although the coefficients in the accelerator and modified neoclassi- 
cal models have the expected signs, fewer of the lags are significant than was the 
case for equipment. Moreover, the distributed lags in the neoclassical and Q models 
are uniformly insignificant, and the Durbin-Watson statistic for each model is even 
smaller than its counterpart for equiprnent. The structures models may perform rela- 
tively poorly for a simple reason: Roughly half of the structures aggregate consists 
of public utilities oil and gas wells, private schools, churches, and hospitals, which 
have a diverse set of determinants excluded from our models. 

B. The Eule^ Eqmations 
We estimate the Euler equations using the Generalized Method of Moments 

(GMM) procedure described by Hansen and Singleton (1982). As with the tradition- 

9. Our use of OLS departs from the usual method of estimating the traditional investment models with 
a correction for AR(1) errors. If these models actually captured the dynamics driving investment, the 
errors would be white noise and an AR(1) correction would not be needed. The AR(1) correction, there- 
fore, should be viewed as a "fix-up" for these models, which should be omitted from a fair horserace with 
the Euler equations. Given our use of OLS, we calculate standard errors by the Newey-West (1987) pro- 
cedure that is robust to heteroskedasticity and autocorrelation of unknown form. 
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TABLE 1 (Continued) 
Modified Neoclassical Modified Neoclassical 

Variables PDE NRS Variables PDE NRS 

X,_ lO 559** .245 W,_ lO - .545** - .269 
(.168) (.131) (.190) (.140) 

xt- l l .532** .256 W,_ l l - .508** - .185 
(.243) (.173) (.188) (.144) 

R2 .815 .480 
DW .436 .174 

NOTES: All models were estimated over 1955:2-1992:4, with ltlKt_, as the dependent variable. To reduce the number of leading zeroes, all 
reported coefficients and standard errors have been multiplied by 100. The standard elTors were calculated with the Newey-West (1987) 
colTection for heteroskedasticity and autocolTelation and are in parentheses. 

AY,_jlK,_, for accelerator model 
A(Ylc),_jlK,_l for neoclassical model 

t i ^ ( I l c)t_ j_ l Yt_ jlKt_, for modified neoclassical model 
QA i for Q model. 

For the modified neoclassical model, Wt_j-(Ylc) _ _tIK _ 
PDE = Producers' durable equipment. 
NRS = Nonresidential structures. 
DW = Durbin-Watson statistic. 
** = significant at the 5 percent level. 

al models, we use the Newey-West (1987) method to obtain a covariance matrix for 
the GMM parameter estimates that is robust to heteroskedasticity and serial 
correlation. 

For GMM to yield consistent parameter estimates, the instruments must be uncor- 
related with the error term, e. If the error term were purely an expectational error, 
rational expectations implies that any variable in the firm's information set during 
period t would be uncorrelated with Et+i (i = 1, . . ., T). In this case, all variables 
dated t-1 and earlier would be valid instruments, as would endogenous variables 
chosen in period t. We take a more conservative stance, restricting our instruments 
to variables dated t-2 and earlier. This decision reflects our concern about the 
potential for measurement error among the variables in the Euler equations.l° Be- 
cause our Euler equations include variables dated as early as t-1 (lKt-ltlSt l), 
et - l could well include the error component of t- 1 dated variables. If so, any 
endogenous variable would have to be dated t-2 or earlier to be a valid instrument. 
Accordingly, the instrument set for the basic Euler equation includes a constant and 
the second and third lags of pl, IKt, IKt2, YtlSt_ 1, and [3tS while the instrument set 
for the Euler equation with time-to-build also includes the fourth and fifth lags of 
these variables. l l 

10. In particular, measurement error almost certainly afflicts the price series p' given the problem of 
measuring quality change in capital goods. This error then contaminates the series for real investment and 
capital stock that BEA constructs from p'. 

11. As a test of robustness, we also estimated the Euler equations with an instrument set that included 
the first lag of each instrument. The results were not materially different from those reported below. We 
should note that the exclusion of instruments dated t-1 will not ensure consistent estimates if the mea- 
surement errors are autocorrelated. In that case, all lagged endogenous variables will be correlated with 
the Euler equation's error term. Implicitly, we are assuming that any measurement errors are not strongly 
autocorrelated . 
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TABLE 2 

GMM ESTIMATES OF INVESTMENT EUL.ER EQUAT10NS 

ERqzlipment Structurcs 
Basic Model Titue-to-Build Basic Model Tinie-to-Build Parameteis ( I ) (2) (3) (4) 

_ 
. 

. 

Ptoductios] fUElUtiOEl 
0 .020 .021 - .193S S - .151 *X 

( .017) ( .015) ( .048) ( .033) 
Adjustment costs 
(XO -.962 ! 4' -1.006 u -4.235 BE -3.537S * 

(.185) (.163) (.822) (.558) (Xl I .590 3.965 B B - 18.334** -20.735X u 

(1.469) ( I .560) (8.926) (05.353) 
Time-to-bllild 

¢() .278 d $' .174* * 
(.090) (.040) 

+ I .066 .242** 
(.092) ( .044) ¢D2 . 3034' B .27084' 
(.114) (.052) 

¢3 .353>"S' .315*4' 
( 094) (.059) 

J Statistic 10.33 15.84 7.78 11.46 
p-value .24 .39 .46 .72 
NOIES: Basic model was esthilated over 1955:2-1992:3. while the time-to-build model was estimated over 1955:2-1')91:4. The standard CrTors are in parentheses and were calculated with the Newey-West ( 1987) colTection for heteroskedasticity and autocol-relation. Estimation of the time-to-build model was done subject to thc restl-iction that ¢() + +1 + ¢, X ¢, = 1. 
8 -- significalit at the 5 percent Ievel. 

To estimate the time-to-build equation, we must specify T, the length of time be- 
tween project starts and completions. The previous estimates of structural time-to- 
build models with quarterly data, Park (1984) and Altug (1989), set T to be three and 
four quarters, respectively. These values of T likely are appropriate for equipment 
investment, but are too small to encompass some construction projects. However, 
with a time-to-build lag much longer than four quarters, the large number of free 
parameters (the Xs) probably cannot be estimated with any precision. Therefore, we 
opted to follow the earlier work and set T = 3, which allows the investment project 
to be spread over four quarters. We estimate (+0, Xl, 42, ¢3), restricting the Xis to 
sum to one. 

The basic Euler equation without time-to-build is estimated from 1955:2 to 
1992:3 (the final period in the sample, 1992:4, provides data for the variables dated 
t + 1). Similarly, the Euler equation with time-to-build is estimated from 1955:2 to 
1991:4. The estimates for both equations are shown in Table 2. As can be seen in 
column 1, the signs of 0 and (xl in the basic model for equipment are positive, con- 
sistent with our expectation. However, neither coefficient is significantly different 
from zero, and 0 is quite small given its interpretation in our model as the share of 
income accruing to equipment. In addition, the omission of time-to-build from the 
basic equation appears inconsistent with the data. As shown by the estimates for the 
time-to-build model in column 2, ¢0 = 0.278, indicating that only 27.8 percent of 
equipment spending occurs during the quarter of the project start; the bulk of invest- 
ment is estimated to take place two and three quarters after the start. Thus, the Euler 
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equation with time-to-build captures the dynamics of equipment investment better 
than does the basic equation. Moreover, the addition of time-to-build increases ctl 
by enough to make that coefficient significantly greater than zero. Still, the time-to- 
build model does not alleviate all the problems with the basic equation, as 0 is still 
very low. 

The results for the Euler equations for structures are worse than those for equip- 
ment, paralleling our results for the traditional models. As shown in columns 3 and 
4, 0 and (xl are significantly negative for both Euler equations, violating our theoret- 
ical priors. Given these nonsensical parameter estimates, the time-to-build model 
for structures cannot be viewed as a success, even though the s are uniformly posi- 
tive and significant. 

Despite the problems with the Euler equation estimates, the only specification test 
typically reported for Euler equations the J statistic does not reject any of the 
models at even the 20 percent level. 12 This result illustrates the weakness of the J 
statistic as an overall test of model specification. Further evidence of the inadequacy 
of the J statistic can be found in Oliner, Rudebusch, and Sichel (1995), where we 
show that the estimated parameters of an investment Euler equation appear to be 
unstable even though the J statistic fails to reject the model. 

4. OUT-OF-SAMPLE PERFORMANCE OF THE INVESTMENT MODELS 

A. Geslerating Out-of-Sample Forecasts 
For each traditional model, the forecast of IKt+ t is ztZt+ l, where zt denotes the 

vector of OLS parameter estimates based on data through period t and Zt + l denotes 
the vector of actual values for the explanatory variables in period t + 1. We generate 
a sequence of these one-step-ahead forecasts by extending the sample one period at 
a time and recalculating YtZt+l for each sample. These forecasts are "out-of- 
sample" in that all coefficients are estimated from data prior to the forecast date. The 
forecasts, however, are "ex post" because they use the actual values of the explana- 
tory variables at time t + 1 in the forecast of investment at time t + 1. In real-time 
forecasting, such values are not available and must be replaced by projections. We 
analyze ex post forecasts because our interest centers on the adequacy of the invest- 
ment equations themselves, not the ease of forecasting the explanatory variables. 13 

We apply an analogous procedure to the Euler equations to generate one-step- 
ahead, ex post forecasts of IK. The specifics of our procedure can be described most 
easily for the basic Euler equation that omits time-to-build Lequation (14)]. First, 

12. The J statistic tests the null hypothesis that the instruments are orthogonal to the error term, as 
required for consistent estimation. This statistic equals the number of observations multiplied by the min- 
imized value of the objective function used in GMM estimation. It is asymptotically distributed X2(df) 
with df equal to the number of instruments minus the number of parameters. 

13. However, we did compute ex ante forecasts from the traditional models using univariate auto- 
regressions to generate one-step-ahead forecasts for the explanatory variables. The ex ante forecast errors 
were almost the same as the ex post errors, as one might expect given the generally small coefficients 
reported in Table 1 for the contemporaneous explanatory variables. 
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equation (14) is estimated by GMM using data through period t. Next, we solve the 
Euler equation for IKt+l. Given the parameter estimates (&0 &1, 0), the assumed 
value for 8, and the actual values for all variables in the equation other than IKt+ 1, 
equation ( 14) defines a quadratic equation in IKt+ 1: 

( & 1 t+ 1 ) IKt2+ 1 + (& 1 ( 1 -8)t+ 1 )IKt+ 1 + Wt+ 1 ° (21 ) 

Where wt+l = (5pzt+l) + &0((l-8)t+l- t)-&lKt + 0 (t+ K ) and we 
have set the expectational error >,+ 1 to zero. Solving equation (21 ) yields 

IKt+ 1 =-( 1-b) + (( 1-b)2-2 Wt+ 1 /(& 1 t+ 1 )) 1/2 ' (22) 

as the forecasting equation for IKt+ 1 . We use the positive branch of equation (22). 
By extending the sample one period at a time and then repeating this procedure, we 
obtain the desired sequence of one-step-ahead, ex post forecasts. 

The same method yields a forecasting rule for the Euler equation with time-to- 
build, equation (13). Given GMM estimates of a0, al17 0, and the Xs, equation (13) 
can be written as a quadratic in IKt+T+ 1: 

(&lit2+T+ 1 ) IKt2+T+ 1 + (&14T(l-b)13t*,+T+ 1 )IK,+T+ 1 + Wt+r+ 1 = O, (23) 

where Wt+T+1 = E i(APt+i+ 1) + &o E i(5tt+i+1) + 0 (tt+T+1 K ) 
=o i=o t+T 

T-1 

+ &1 E Xi(AIKt+i+ 1 )-&l+Tt*,+IK,+ . 
i=o 

To make the time subscripts consistent with those in the basic Euler equation, we lag 
each term in equation (23) by X periods and then solve (23) for IKt+ 1: 

IK,+1 = -+T(1 -b) + (+2(1 -a)2-2W,+l/(&l* ,+l))l'2 . (24) 

The positive branch of equation (24) generates our ex post forecast of IKt+ 1 for the 
time-to-build model, based on the actual values for the right-hand side variables and 
GMM estimates of the parameters computed with data through period t. 14 

14. Equations (22) and (24) are nonlinear functions of estimated parameters. Following Kennedy 
(1983), we also computed forecasts from equation (22) with a correction for the possible bias from this 
nonlinearity. The correction made virtually no difference and is not used below. We tried one other sensi- 
tivity test for the Euler equation forecasts from equation (22). Rather than using the actual values for 
right-hand-side variables dated at period t + 1, we used the projections of these variables on our instru- 
ment set. Strictly speaking, this procedure is more congruent with the rational expectations assumption 
built into the Euler equations. However, the use of projections rather than actual period t + 1 values had 
no material effect on the Euler equation forecasts. 
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TABLE 3 

SUMMARY STATISTICS FOR EQUIPMENT FORECAST ERRORS 

100*(Forecast Error) 
Regressed on a Constant 

Model 100*RMSE Bias DW N 

Accelerator .228 - .022 .234 116 
(.51) 

Neoclassical .336 .045 .233 116 
(.73) 

Modified Neoclassical .227 - .105** .431 116 
(2.92) 

Q .396 - .231** .137 116 
(3.75) 

Basic Euler Equation 9.720 -.078 2.431 116 
(.13) 

Time-to-Build Euler Eqn. 1 2.224 .376 .676 113 
(1.18) 

NOTES: As described in the text, errors are calculated from rolling, one-quarter-ahead forecasts for 1964;1 to 1992:4. All forecasts are out- 
of-sample, ex post forecasts. Absolute value of t statistics are in parentheses and are calculated from Newey-West (1987) standard errors. 
1. Excludes forecasts for three periods for which the model failed to generate a real-valued solution. 
RMSE = Root mean square elTor. 
DW = Durbin-Watson statistic. 
N = Number of forecast elTors. 
** significant at the S percent level. 

B. Out-of-Sample Forecast Errors 

Table 3 summarizes the out-of-sample forecast performance of the equipment 

models over the period 1964:1 through 1992:4. The first column shows the root 

mean squared error (RMSE) of the one-step-ahead forecasts, multiplied by 100 to 

remove leading zeroes. The next two columns present statistics derived from a re- 

gression of the forecast errors on a constant. Column 2 shows the estimated coeffi- 

cient from this regression, which equals the mean forecast error, a measure of the 

forecast's bias. The Durbin-Watson statistic from the regression, shown in the third 

column, characterizes the extent of first-order autocorrelation in the forecast errors. 

Column 1 shows that both Euler equations produce far less accurate forecasts of 

equipment investment than do the traditional models. The RMSE of the basic Euler 

equation is roughly twenty-five times larger than that of the worst traditional model, 

the Q equation. The addition of time-to-build lags markedly improves the forecast 

performance of the Euler equation, but the RMSE of the time-to-build equation is 

still well above those of the traditional models. The RMSEs of the traditional mod- 

els as a group lie in a fairly narrow range, with the accelerator and modified neo- 

classical models at the low end. 

The relatively small RMSEs of the traditional models should not be interpreted as 

an endorsement of their forecasting ability. The low Durbin-Watson (DW) statistics 

indicate that the traditional models all make persistent forecast errors. Moreover, 

the forecasts from the modified neoclassical and Q models have a significant down- 

ward bias. The traditional models look good only relative to the performance of the 

Euler equations. 

Table 4 documents the forecast performance of the structures models. As in Table 

3, the RMSEs for both Euler equations are many times larger than those of the tradi- 
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TABLE 4 

SUMMARY STATISTICS FOR STRUCTURES FORECAST ERRORS 

100-8(Forecast Error) 
Regressed on a Constant 

Model 100*RMSE Bias DW N 

Accelerator . 2 13 .039 . OS 1 1 16 
(.94) 

Neoclassical .24 1 .077 .079 116 
(1 .73) 

Modified Neoclassical .205 .008 . 1 17 1 16 
(.21) 

Q .258 .067 .065 1 16 
( 1 .37) 

Basic Euler Equation 8.735 .525 2.331 1 16 
(.72) 

Tirne-to-Build Eultr Eqn. 1 7.244 1.161 .871 1 12 
( I .78) 

NOTES: See Table 3. 

1. Excludes forecasts for four periods for which the Illodel failed to generate a real-valued solution. 
RMSE = Root mean s4uare error. 
DW = Durbin-Watson statistic. 
N= Number of forecast elTors. 

tional models. However, in contrast to the results for equipment, the inclusion of 
time-to-build lags does not greatly reduce the RMSE of the Euler equation. Another 
difference from Table 3 is the absence of bias in the forecasts from the traditional 
models. Still, the forecast errors from these models are highly autocorrelated, with 
the largest DW statistic at 0.117, suggesting the omission of important explanatory 
variables. 

C. Pairwise Forecast Comparisons 
The inability of the Euler equations to forecast out of sample also is evident in 

pairwise model comparisons. These comparisons are made, following Fair and Shil- 
ler (1990), in regressions of the form 

IKt+ l-IKt = a + QE(IKfE t+l-IKt) + QT(IKfrt+l-IKt) + ut (25) 

where IKfE t+ I and IKfT t+ I are the one-step-ahead forecasts of IKt+ l from an Euler 
equation and a traditional model. Equation (25) regresses the actual change in IK on 
the predicted change from the two models. If QE = O, the forecasts from the Euler 
equation contain no predictive information beyond that in the constant or the tradi- 
tional model. Conversely, if QT = O, the forecasts from the traditional model con- 
tain no relevant information beyond that in the constant or the Euler equation. If 
neither model can predict changes in IK, the estimates of both QE and QT should be 
zero; if both models have predictive power, both QE and QT should be nonzero. 

Table 5 displays the pairwise forecast comparisons for the models of equipment 
investment. The estimates of QE and QT appear in the first two columns, along with 
t statistics calculated from Newey-West standard errors. The top part of the table 
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TABLE 5 

FAIR_SHII LER REGRESSIONS FOR EQUIPMENT 

SlE S27 Traditional Model R2 N 

Basic Euler Equcltion 
1. - .0006 .187* * AcceleratOr . 132 116 

(.74) (2.64) 
2. - .0007 .068 Neoclassical .021 116 

(.94) (1.49) 
3. - .0004 .233** Modified Neoclassical .175 116 

(.62) (3.64) 
4. -*0007 .069 Q .019 116 

(.88) (1.45) 
Tiwze-to-Build Eules Equation 
5. .011 *t .200** Accelerator . 170 113 

(4.04) (2.80) 
6. .009** .065 Neoclassical 037 113 

(3.03) (1.40) 
7. .009** .235** Modified Neoclassical .200 113 

(3.77) (3.69) 
8. .0088* .073 Q .043 113 

(2.37) (1.48) 
NO1ES: Each row reports the OLS estimate.s of Qr and QT from the regression 

IK, - IK,_l = a + QE (IK/E,-IK,_|) + S1T (IKfT,-IK,_|) + U,, 

estimated over 1964:1- I992:4. IK/F, and IKfT, are the one-step-ahead forecasts of IK, from an Euler equation and a traditional model 
respectively. Absolute values of t statistics are in parentheses and are calculated from Newey-West (1987) standard errors. 

** = significant at the 5 percent level. 

compares the basic Euler equation to the traditional models. As shown, the esti- 
mates of QE are uniformly insignificant. That is, forecasts from the basic Euler 
equation have no significant information over and above that provided by the tradi- 
tional models. In contrast, two of the traditional models the accelerator and the 
modified neoclassical models- do have information not conveyed by the Euler 
equation. However, the relatively low values for R2 caution against relying too 
heavily on any of the models. 

The bottom part of Table S compares the Euler equation with time-to-build lags to 
the traditional models. The accelerator and the modified neoclassical models pro- 
vide information not in the time-to-build Euler equation, similar to the results in the 
top panel. However, QE is now statistically significant in the comparison with each 
traditional model. Apparently, the addition of time-to-build lags yields an Euler 
equation forecast with information not found in the traditional models. Nonetheless, 
we do not interpret this result as particularly favorable to the Euler equation. First, 
QE is estimated to be extremely small, suggesting that the Euler equation should get 
little weight when pooled with the traditional models. Second, despite the signifi- 
cance of QE, the predictive power of the Euler equation is extremely limited. If we 
omit the traditional model from the Fair-Shiller regression, the R2 drops to 0.013. 
Thus, the Euler equation with time-to-build lags explains only 1.3 percent of the 
variation in IKt I-IKf over the full sample. 

Table 6 presents the analogous pairwise comparisons for the models of structures 
investment. As can be seen, none of the structures models can predict changes in 
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TABLE 6 

FAIR-SHILLER REGRESSIONS FOR STRUCTURES 

QE QT 

Basic Euler Equation 
1. - .0009 .022 

(1.62) (.65) 
2. - .001 - .0004 

(1.52) (.01) 
3. - .0009 .013 

(1.59) (.42) 
4. - .001 - .012 

(1.46) (.50) 
Time-to-Build Euler Equation 
5. .0009 .047 

(1.61) (1.30) 
6. .0007 .009 

(1.41) (.28) 
7. .0009 .036 

(1.53) (1.08) 
8. .0007 - .005 

(1.35) (.17) 

Traditional Model N 

Accelerator 

Neoclassical 

Modified Neoclassical 

.010 116 

.004 1 16 

.006 1 16 

Q .007 1 16 

Accelerator 

Neoclassical 
.016 

112 

-.009 1 12 

Modified Neoclassical .OO5 1 12 

Q - oo9 112 

NOTES: See Table 5. 

IK. The estimates Of QE and QT are uniformly insignificant at the 5 percent level. 
Moreover, the values of R2 cluster around zero, with the largest value being only 
0.016. 

5. WHY DO THE EULER EQUATIONS PERFORM SO BADLY? 

Several factors could account for the Euler equations' inaccurate forecasts of in- 
vestment spending. One possibility is that the GMM estimator has poor finite- 
sample properties [see West and Wilcox (1994) and Fuhrer, Moore, and Schuh 
(1995) for discussions of this problem in the context of inventory models]. Another 
possible shortcoming is the use of aggregate data to estimate Euler equations that 
apply at the firm level. In this section, however, we argue that the Euler equations 
may well forecast poorly because they impose an invalid dynamic structure on the 
data. 

Consider equation (22), which generates the forecasts of IKt+ 1 for the basic Euler 
equation, expressed (after some algebra) in the form: 

IKt+1 = -(1 -8) + L (1 -a)2 + 2 ( IKt _ MPKt-Ct) ] 1/2 
(26) 

where MPKt = HYt+l/Kt is the marginal product of capital, and ct represents the 
discrete-time version of Jorgenson's user cost of capital. 15 Equation (26) shows that 
the forecast of IKt+l depends on its own value in period t and on the difference 
between the marginal product and the cost of capital. The relative importance of 

15. Specifically, ct = (Pt/ + (xO)(rt+ + 8) - (1 - 8)(PIt+l - Pt') 
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each factor reflects the magnitude of marginal adjustment costs, (xl. If (xl is large, 
then adjusting the rate of investment is quite costlyS and 1Kt+ l will deviate relatively 
little from IKt, regardless of the difference between MPKt and ct. In contrast, as (xl 
approaches zero, MPKt-Ct becomes the dominant influence on IKt+ 1 Intuitively, 
when marginal adjustment costs are very small, the firm quickly adjusts the capital 
stock to arbitrage away differences between the marginal product of capital and the 
user cost. 16 Accordingly, the Euler equation will forecast IKt+ l to deviate sharply 
from IKt whenever (MPKt-ct)/xl is large. Given the smoothness of the actual data 
for IK, the forecasts in such cases will be inaccurate. 

The previous section showed that adding time-to-build lags does not remedy the 
problems with the basic Euler equation, and equation (26) provides the key for un- 
derstanding this result. In particular, the version of equation (26) for the time-to- 
build model would replace IKt and MPKt-ct with four-quarter moving averages of 
these variables that run from period t-3 to period t. Thus, whenever a 1 is small or 
a wide gap exists between MPK and c for several quarters, the time-to-build model 
vvlll forecast big changes in investment. In 1986, for example, the time-to-build 
model for equipment produced terrible forecasts. The collapse in oil prices that year 
sharply reduced the price deflator for aggregate output relative to the deflator for 
equipment alone, driving up real equipment prices (p'). The resulting capital gain 
for owners of equipment lowered the user cost, Ct, relative to MPKt. Accordingly, 
the time-to-build Euler equation expected equipment outlays to be accelerated in 
order to take advantage of the low user cost, implying a dramatic decline in IKt+ l 
from its level in period t. In reality, no such intertemporal shift occurred. 

As a general matter, the actual series for IK does not display the high degree of 
time shifting expected by either Euler equation in response to changes in relative 
prices and interest rates. This problem could well reflect some unrealistic assump- 
tions that underlie both Euler equations. First, the equations embed the "putty- 
putty" technology of the original neoclassical model. That is, the Euler equations do 
not distinguish between already-installed capital and capital still to be purchased. 
These equations expect the capital-output ratio for the entire installed capital stock 
to adjust to a change in relative prices or interest rates. Such an adjustment, even if 
done slowly, could induce a large shift in investment outlays. In contrast, a putty- 
clay model would not allow firms to alter the capital intensity of their existing pro- 
duction facilities. 

In addition, the Euler equations assume that investment is fully reversible. Under 
the more reasonable assumption of irreversibility, Pindyck (1991) and others have 
shown that investment spending will adjust sluggishly to price changes that generate 
increased uncertainty about the economic environment. 

Finally, the maintained assumption of convex adjustment costs-which generates 
the investment dynamics in our Euler equations may be unfounded. Although 

16. Note that IKt+ l is negcztilely related to MPKt-ct. That is MPKt > ct implies a low value of 
IKt+ 0 relative to IK. The intuition is simply that the firm shifts investment from period t + 1 to period t to 
capture the profits from the high marginal product of capital. 
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convex adjustment costs are a convenient assumption, the case for convexity is weak, especially when the adjustments costs are internal to the firm. Convexity im- plies that the installation of new capital goods should be progressively less costly when dragged out over longer and longer periods. There is no inherent reason why this should be so, a point made originally by Rothschild (1971) and forcefully res- tated by Nlckell (1978), but ignored in most empirical models of investment. 

6. CONCLUSION 

This paper extends earlier "horse race" comparisons of empirical investment models by adding two Euler equations to the usual stable of traditional but largely nonstructural models and by focusing on out-of-sample performance. The basic Euler equation used in the comparisons is a "canonical" Euler equation representa- tive of those found in the applied investment literature. In addition, we use a richer Euler equation with time-to-build lags. Our results indicate that the forecast perfor- mance of both Euler equations is substantially worse than that of the traditional models. Although the time-to-build equation performs slightly better than the basic Euler equation, both Euler equations produce forecasts of investment spending that are much too volatile. 
Our results have the following implications. First, and most important, the inabil- ity of the Euler equations to forecast investment spending even one quarter ahead suggests that these models are misspecified. 17 Investment Euler equations based on simple adjustment cost functions have become a fixture in applied work, but re- searchers should not assume that these equations are valid structural models. We argued that better models of investment might be provided by Euler equations that embed irreversibility or a putty-clay technology, in order to produce more sluggish 

. 

. . 

adJustments ln lnvestment. 
Second, none of the models we evaluated could forecast investment in nonresi- dential structures. This aggregate has a very diverse set of components, and no sin- gle model is likely to capture the determinants for all these types of structures. It would be interesting to know whether the traditional models or Euler equations can forecast investment for a single component of the aggregate, such as industrial or commercial buildings. 
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