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We examine the properties of Dickey-Fuller unit root tests under fractionally-integrated alternatives and find that these tests 

have quite low power. 

1. Fractional integration versus unit roots 

Nelson and Plosser (1982) and many other studies have failed to reject the null hypothesis of a 
single autoregressive unit root for many macroeconomic time series. Fractionally-integrated models 
have received recent attention because of their ability to provide a natural and flexible characteriza- 
tion of persistent processes, while nesting the unit root hypothesis as a special, and potentially 
restrictive, case. Our analysis will consider whether common unit root tests when applied to 
fractionally-integrated data are able reject the unit root null hypothesis. 

The general ARFIMA (henceforth, AutoRegressive Fractionally-Integrated Moving Average) 
model can be written as 

@( L)(l - qdx, = O(L)E,, (I) 

where d is any real number. [As usual, O(L) and O(L) are the autoregressive and moving-average 
polynomials in the lag operator (with roots outside the unit circle), and e, - (0, cr,‘).] Operationally, 
the fractional difference operator (1 - L)d can be expressed by a binomial expansion. The process is 
stationary and invertible if d E (- l/2, l/2), and one can always transform a fractionally-integrated 
series of higher order (d > l/2) into this range by taking a suitable number of integer differences. ’ 
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’ For a proof, see Hosking (1981). More extensive discussion and references may be found in Diebold and Rudebusch (1989a, 

1989b) and Diebold and Nerlove (1990). 
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with non-zero d, the ARFIMA model displays ‘long memory’, that is, substantial dependence 
between observations r periods apart, even for large 7. Indeed, as r increases, the ARFIMA 
autocorrelations decline at a very slow hyperbolic rate; in contrast, ARMA autocorrelations decline 
at a quite rapid geometric rate. 

In our earlier work [Diebold and Rudebusch (1989a)], we obtained a point estimate of d equal to 
0.68 for the level of U.S. postwar quarterly real GNP per capita (equivalently, the fractional order for 
the first difference of GNP is equal to -0.32). Thus, the level of real output appears to have long 
memory, in the sense that the d estimate is significantly greater than zero. However, the long memory 
may not be associated with a unit autoregressive root; notably the d estimate is substantially less 
than one, and the unit root hypothesis can be rejected at conventional significance levels. More 
generally, regardless of the significance of the difference of the d estimate from unity, the 
provocative point estimates suggest the following thought experiment: If a series were best’char- 
acterized by a fractional process, would a researcher be able to detect that fact by rejecting the 
hypothesis of a unit root using conventional Dickey-Fuller [Fuller (1976)] tests? With this motiva- 
tion, we proceed to examine the power of Dickey-Fuller tests when the true data-generating process 
is fractionally integrated. 

2. Analytical conjectures about power 

Consider a random walk 

(1 -L)dX,=er, d= 1, (2) 

with white noise innovation, eI - (0, u,‘). I n a classic paper, White (1958) characterized the distribu- 
tion of the least-squares estimator /? in the first-order autoregressive [henceforth, AR(l)] model, 

x, = m-, + Cf, 

under the unit-root null hypothesis that p = 1, i.e., when the true data-generating process is (2). 
Consider the natural generalization of (2) to the case of a pure fractionally-integrated process, 

(1 - QdX, = E,, l/2 -C d < 3/2. (4) 

Or equivalently, 

(1 -L)x,=u,, with (1 - L)d~, = E,, (5) 

where 6= d - 1. Thus, d E (l/2, 3/2) corresponds to 2~ (-l/2, l/2), and the natural analog of 
the White regression (3) is 

X, = pX,_, + u,, with (1 - L)‘u, = E,, (6) 

where the unit root null hypothesis is again /3 = 1; however, although the regression innovation u, is 
stationary and invertible, it is not white but rather fractionally integrated. White’s results emerge for 
the special case of 6= 0 (d = 1). In an important paper, Sowell (1990) shows that the asymptotic 
distribution theory depends crucially on & in particular, the speed of convergence to the asymptotic 
distribution varies with d: As illustrated in fig. 1, if 6= 0, the well-known [e.g., Fuller (1976)] result 
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Fig. 1. Convergence speed, T-“. 

about convergence speed that (@ - 1) = O(T-‘) holds (where T is sample size), and th& result 
continues to hold for do (0, l/2). Conversely, if 6~ (-l/2, 0), then (p^ - 1) = O(T-‘-2d). Thus, 
convergence is faster or slower than O(T’/*) as d” is greater or less than - l/4. 

Sowell (1990) also shows that the asymptotic fractional unit root distribution theory may be 
severely misleading in all but very large samples. This is because the distribution of /? depends on 
two underlying random variables, the convergence of one of which to its asymptotic distribution is 
very slow for plausible d values. The resulting finite-sample similarity of the integer unit root 
distribution and the fractional unit root distribution - in spite of their sharp asymptotic differences 
- leads Sowell to conjecture that conventional unit root tests may have low power against fractional 
alternatives. 

3. A Monte Carlo experiment 

We consider two data-generating processes: fractional noise, 

(1 - QdX, = c,, (7) 

with values of d equal to 0.3, 0.45, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, and 1.3; and the AR(l), 

(1 -bL)X,=r,, (8) 

with values of b equal to 0.7, 0.8, 0.9, 0.95, 0.98, 1.0, 1.02, 1.05, and 1.1. For both processes, 
parameter values equal to one correspond to the unit root null hypothesis. The innovation variance 
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Table 1 
Monte-Carlo power of unit root tests ARFIMA(0, d, 0) alternative. a 

d 

0.3 0.45 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 

T=SO 

7 1.00 0.65 0.51 0.32 0.17 0.07 0.05 0.12 0.27 0.46 
P 1.00 0.62 0.50 0.31 0.16 0.07 0.05 0.07 0.12 0.18 

T=lOO 

7 1.00 0.88 0.71 0.48 0.25 0.09 0.04 0.14 0.33 0.54 
P 1.00 0.87 0.71 0.48 0.25 0.09 0.04 0.08 0.15 0.21 

T=250 

7 1.00 0.99 0.90 0.70 0.39 0.13 0.05 0.17 0.40 0.62 
P 1.00 0.99 0.90 0.70 0.39 0.14 0.05 0.09 0.18 0.25 

a All tests are two-sided and at the 5% level. Standard errors of the estimates vary, but all are less than 0.0071. 

0,’ is held fixed at 1.0, and sample sizes (denoted by T) of 50, 100, and 250 are examined, with 5000 
replications (denoted by N) performed for each sample size. 

Sample for the ARFIMA(0, d, 0) process (7) with d = 0.3 and d = 0.45 (stationary parameter 
configurations) are formed a follows. First, a vector, U, consisting of TN(0, 1) deviates is generated 
using IMSL subroutine GGNML. Then the desired TX T data covariance matrix (C) is constructed. 
This is simply the Toeplitz matrix formed from the autocovariances, which are given by 

where r(s) is the gamma function [see Hosking (1981)]. We next obtain the Choleski factorization of 

Table 2 
Monte-Carlo power of unit root tests AR(l) alternative. a 

b 

0.7 0.8 0.9 0.95 0.98 1.0 1.02 1.05 1.1 

T=50 

7 0.90 0.58 0.18 0.08 0.04 0.05 0.21 0.70 0.97 
P 0.89 0.55 0.17 0.07 0.04 0.05 0.12 0.70 0.97 

T=lOO 

7 1.00 0.99 0.58 0.18 0.06 0.05 0.58 0.97 1.00 
P 1.00 0.99 0.56 0.17 0.06 0.05 0.52 0.98 1.00 

T=250 

7 1.00 1.00 1.00 0.75 0.17 0.05 0.97 1.00 1.00 
P 1.00 1.00 1.00 0.75 0.17 0.05 0.98 1.00 1.00 

a All tests are two-sided and at the 5% level. Standard errors of the estimates vary, but all are less than 0.0071. 
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C, C = PP’, where P is lower triangular, using IMSL subroutine LUDECP. Finally the sample, x, is 
generated as x = Pv; clearly, cov(x) = PP’ = C. Construction of x in this way eliminates dependence 
on pre-sample startup values, which can be particularly problematic with long-memory models. For 
the non-stationary parameter configurations d = 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2 and 1.3, we generate 
fractional noise with a parameter d”= d - 1, as above, which yields observations on (1 - L)x,. Then, 
taking x0 = 0, we construct the sample {xi,. . _ , xT} as cumulated sums. 

For the stationary realizations of the AR(l) process (8) we generate N(0, 1) variates and again 
transform by the Choleski factor of the covariance matrix. The Toeplitz covariance matrix C is 
formed from the autocovariances, which are given by 

yx( T) = [ cr,2/(1 - b2)] b’. (10) 

Data for the nonstationary parameter configurations corresponding to b = 1.0, 1.02, 1.05 and 1.1 are 
constructed directly from the recursion (8) using a startup value of x0 = 0. 

For each Monte Carlo replication i = 1,. . . , N, we apply two unit root tests based on the 
regression, 

X,=8X,_, +vr. (11) 

We report the Dickey-Fuller f-statistic T (for the null hypothesis that S = 1) and the Dickey-Fuller 
‘normalized bias’ statistic p, which is equal to T(s^ - 1). All tests are two-sided and are performed at 
the 5 percent level using critical values from Fuller (1976). 

The power estimates are computed as relative rejection frequencies and are presented in table 1 
for ARFIMA(0, d, 0) alternatives and in table 2 for AR(l) alternatives. Some similarities are 
apparent for both the ARFIMA and AR alternatives. First, for a fixed parameter value d or b, 

power increases monotonically with sample size, T. Second, for a fixed sample size, power increases 
monotonically with both 1 d - 11 and 1 b - 11. Third, for fixed sample size, power is always 
asymmetric around the respective null hypotheses, d = 1 and b = 1, rising more quickly for 
parameter values greater than unity. Finally, for fixed sample size, the power of the r and p tests is 
always approximately equal for d < 1 or b < 1, whereas divergences occur for other parameter 
configurations. Of great interest, however, is the difference across the alternatives: namely, power 
grows much more slowly with divergence of d from 1 than with divergence of b from 1. 

4. Conclusion 

Schwert (1989) has evaluated the ability of unit root tests to correctly determine the presence of an 
autoregressive unit root in a mixed ARIMA( p, 1, q) process. His results suggest that the empirical 
size of these tests when applied to a mixed process is often greater than their nominal size. For 
example, in the presence of a first-order moving-average term, the unit root tests often lead to the 
incorrect conclusion that the time series under investigation is stationary. We focus on power rather 
than size, but our results lead to the complementary conclusion that the power of the conventional 
unit root tests against fractionally-integrated alternatives is quite low. De Jong, Nankervis, Savin, 
and Whiteman (1989) and Rudebusch (1990) reach similar conclusions after examining the power 
functions of unit root tests against short-memory alternatives with dominant roots close (in the 
Euclidian sense) to unity. Here, we have effectively extended and amplified that argument by 
showing that fractional alternatives far (in the Euclidian sense) from the null are nevertheless close in 
terms of induced persistence, which translates into low power. Thus, the tests proposed by Dickey 
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and Fuller can in the face of fractionally-integrated processes lead to an incorrect conclusion that a 
time series has a unit root. We believe that our work, along with the other recent size and power 
studies, provide a joint condemnation of the widespread mechanical application of unit root tests. A 
more appropriate testing procedure would carefully consider the correct specification of the complete 
stochastic process before drawing conclusions about the presence of a unit root. 
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