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I. Introduction 

To economic agents suffering through cycles of 
prosperity and depression, the prospect of a set 
of indicators that could provide advance warning 
of economic fluctuations is tantalizing. Leading 
cyclical indicators of U.S. aggregate economic 
activity have had continued popularity in the 50 
years since their original development by Wesley 
Mitchell and Arthur Burns (1938).1 The use of 
leading indicators has survived the criticism of 
"measurement without theory," first leveled by 
Koopmans (1947), as well as the rise (and partial 
decline) of the large-scale structural modeling ap- 
proach to econometric forecasting. The release 
of the composite index of leading indicators is 
trumpeted each month by the popular and finan- 
cial press, although the interpretation and signifi- 
cance that should be attached to the latest num- 
bers are often unclear. This article provides a 
rigorous analysis of the predictive ability of the 

We evaluate the ability 
of the composite index 
of leading indicators to 
predict business cycle 
turning points. Formal 
probability-assessment 
scoring rules are ap- 
plied to turning-point 
probabilities generated 
from the leading index 
via a Bayesian sequen- 
tial probability recur- 
sion. These scoring 
rules enable rigorous 
and systematic evalua- 
tion of leading indi- 
cator forecasts. The re- 
sults are used to assess 
the merits of forecast- 
ing with the composite 
leading index and to 
suggest possible im- 
provements in its con- 
struction. 
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1. Paul Samuelson (1987) recalls an even earlier construc- 
tion of leading indicators, the Harvard ABC curves, which 
were popular in the 1920s. 
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composite leading index in forecasting business cycle peaks and 
troughs. In particular, we apply formal probability-assessment scoring 
rules to the cyclical turning-point probabilities generated from the in- 
dex of leading indicators via Neftci's (1982) sequential probability re- 
cursion. 

The next section provides theoretical justification for the use of lead- 
ing indicators in economic prediction, with a focus on the prediction of 
cyclical turning points. The informational content of a leading indicator 
can be evaluated only in the context of a given method of prediction, so 
various methods of translating leading signals into turning-point predic- 
tions are discussed. In Section III, we consider standards for evalu- 
ating the predictive performance of the leading indicators through a 
number of formal probability-assessment scoring rules that naturally 
complement the sequential probability recursion. The quadratic proba- 
bility score, the probability-forecast analog of mean-squared prediction 
error, and additional measures of probability-forecast calibration and 
resolution are introduced. These scoring rules characterize the fore- 
casting ability of the leading indicators in a number of dimensions. 

The fourth and fifth sections contain empirical results. In Section IV, 
the probability forecasts are calculated, and several methodological 
innovations are introduced into the sequential probability recursion. 
These forecasts are scored in Section V. The final section contains 
concluding remarks and suggests directions for future research. 

II. Prediction with Leading Indicators 
Leading economic indicators have long been used in the prediction of 
business cycle peaks and troughs. Many have argued that the compos- 
ite leading index (CLI) is particularly useful in the analysis of business 
conditions if attention is placed on its ability to predict an economic 
event (a turning point), rather than to forecast future values of eco- 
nomic time series. This view contrasts with the regression-based ap- 
proaches of Auerbach (1982) and Neftci (1979), who examine the pre- 
dictive power of linear regressions of coincident variables on leading 
indicators.2 It also contrasts with the work of Wecker (1979) and Kling 
(1987), which involves translating such linear projections into turning- 
point forecasts. Both have a foundation in the linear regression frame- 
work, where a prediction error of a given size carries the same weight, 
regardless of the point in the cycle at which it occurs. Consequently, a 

2. Auerbach (1982), for example, finds that the composite leading index is causally 
prior to unemployment and industrial production. This contrasts with Neftci (1979), who 
shows that the individual component indicators, taken one at a time, are less useful for 
predicting changes in cyclical variables. (Koch and Rasche [1988] report similar results.) 
This suggests that the benefits of "portfolio diversification" are one motivation for the 
use of a composite index. 
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good fit at the turning points can be overwhelmed by a poor fit at the 
majority of data points between turning points. 

In this article, we take an event-oriented, nonregression-based ap- 
proach, motivated by the belief that the economy behaves differently 
in the downturn phase than in the upturn phase of the cycle and, in 
particular, that turning points delineate essential changes in the empir- 
ical relations among economic variables. Okun (1960), Hymans (1973), 
Zarnowitz and Moore (1982), Moore (1983), and others have noted that 
the turning points of business cycles are special and that the composite 
index of leading indicators has been constructed so as to maximize the 
amount of turning-point information available.3 Thus, the CLI as cur- 
rently constructed may not be best suited for prediction and evaluation 
in the classical minimum mean-squared prediction error framework; 
the information content of the leading indicators has been focused on 
the occurrence of an economic event, the business cycle turning point, 
not on the value of an economic variable. Leading indicator informa- 
tion may be qualitative and event oriented, providing a signal of 
changes in economic regime. 

Early writers on the business cycle paid close attention to the differ- 
ent mechanisms operating at peak and trough ("crisis and revival") 
and during expansion and contraction.4 One difference is the apparent 
asymmetry of the business cycle: the long, gradual expansion versus 
the short, steep contraction, as discussed in Neftci (1984). Recent 
econometric work in the areas of switching and threshold models, 
nonlinear dynamical systems, and nonlinear filtering is in the same 
spirit.5 Given different behavior of the macroeconomy during expan- 
sions and contractions, the dynamic optimization problems faced by 
agents imply the desirability of predicting turning points. In such a 
switching economy, there is an advantage in forecasting both the ex- 
pected future value of an economic variable and its future probability 
structure, as delineated by turning points. For example, Neftci (1982) 
considers the case where Y, is a stochastic variable representing major 
macroaggregates such as employment or production, and Y, has two 
different probability distribution functions GU(Y,) and Gd( Y,). The first 
represents probabilities associated with Y, during the upswing or ex- 
pansion regime; the second represents probabilities during the down- 
swing or contraction regime. A turning point, peak or trough, is defined 

3. For example, in presenting a major redefinitional revision of the CLI, Zarnowitz 
and Boschen (1975) describe the most important selection criterion for choosing compo- 
nents of the index in terms of turning points: "The consistency of cyclical timing is 
crucially important for the principal use of the indicators: timely recognition (ideally, for 
the leading series, reasonably successful prediction) of business cycle turning points. 
Hence timing is accorded the highest weight." 

4. See, e.g., Haberler (1937) and Schumpeter (1939). 
5. See, e.g., Tong (1983); Hamilton (1987); and Brock and Sayers (1988). 
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as the point in time when the probability distribution changes from 
GU(Y,) to Gd(y,) or vice versa. The prediction problem can then be 
separated into forecasting the period when the distributions switch and 
then obtaining forecasts of the future values of Y,. 

In general, when the relationships among the major macroaggregates 
change with the phase of the business cycle, a separate prediction of 
turning points will be useful. For example, a businessman may project 
product sales based on a projection of aggregate gross national product 
(GNP). The relationship between sales and GNP may be very different 
when the economy is expanding from when it is contracting; thus, it is 
fruitful to predict not only the future values of GNP but also the re- 
gime. Moreover, regime-specific business-cycle behavior may be in- 
stitutionalized, as are the federal budget deficit targets mandated by the 
Gramm-Rudman-Hollings legislation, which, by law, are suspended 
automatically during a recession. 

Given a separate role for the prediction of turning points, there is 
now a place for a "leading indicator," a series that portends the down- 
turn or upturn. In forecasting situations, a leading indicator is only as 
good as the rule used to interpret its movements, that is, the procedure 
that maps leading-indicator changes into turning-point predictions. The 
determination of rules that yield "early warnings" while minimizing 
"false alarms" is analogous to the construction of statistical tests with 
good properties in terms of type I and type II errors. The classic 
example of a turning-point filter associated with the CLI is the three- 
consecutive-declines rule for signaling a downturn. (See, e.g., Vaccara 
and Zarnowitz 1977.) More sophisticated rules have been studied by 
Okun (1960), Hymans (1973), and Zarnowitz and Moore (1982). 

However, as described in Neftci (1982), a class of real-time sequen- 
tial-analytic leading-indicator prediction rules can be rigorously for- 
mulated for the switching economy. Label the coincident indicator Yt, 
which, as above, switches probability distribution at turning points. A 
leading indicator X, also switches distribution (a turning point) but with 
some lead time over the turning point in Y,. The forecaster tries to 
recognize the change in the probability distribution of X, with enough 
lead time to fruitfully predict the turning point in Y,. Let Zx be an 
integer-valued random variable that represents the time-index date of 
the first period after the turning point in X,. For example, in the predic- 
tion of a downturn, 

Xt - FU(XM), I c< t < Zx, 

Fd(Xt), Z t, 

where FU and Fd are the respective upturn and downturn distributions. 
Time-sequential observations on the leading indicator are received, so 
at time t, there are (t + 1) observations denoted xt = (xo, x1, . . . , xt). 
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At time t, we calculate a probability for the event Zx ' t, that is, that by 
time t a turning point in X has occurred. 

The probability of Zx ' t after observing the data Xt at time t can be 
decomposed by Bayes's formula: 

P(Zx '< tlxt) - P(XtlZx ' t)P(Zx ' t) 
P(Z~~~~~ PXt 

Define Ilt = P(Zx C tjXt) as the posterior probability of a turning point 
given the data available. As shown in Appendix A, we obtain a very 
convenient recursive formula for the posterior probability prediction of 
a downturn: 

Ht = [njt-i + ru * (1 - H,t_1)]fd(xtlXt-i)/{[Ht-i ? vt 

(1 I-It_)]fd(XtjXtI_1) + (1 - _ -)fU(xtlxt _ - 

where Fu = P(Zx = tlZx2 t), the probability of a turning point peak in 
period t given that one has not already occurred, and fu and fd are the 
probability densities of the latest (tth) observation if it came from, 
respectively, an upturn or downturn regime (in Xt) and conditional 
upon previous observations.6 (To predict the probability of an upturn 
or trough, exchange fu withfd and use the transition probability rFd, the 
probability of a trough in t given a continuing contraction.) With this 
formula, the probability Ht can be calculated sequentially by using the 
previous probability Ht -1, a "prior" probability that Z = t based solely 
on the distribution of previous turning points, and the likelihoods of the 
most recent observation xt based on the distribution of Xt in upswings 
and downswings. Given Ilt, a probability forecast about the value of 
Zx, the forecaster can then relate this to Zy, the occurrence of a turning 
point in Yt. In practice, the probability of a turning point in Xt is 
mapped into the probability of an "imminent" turning point in Yt over 
a fixed horizon. 

The precise application of this formula to the problem of forecasting 
the business cycle is described in Section IV. The sequential turning- 
point probabilities supplied by the above formula have been applied by 
Neftci (1982) and Palash and Redecki (1985) in a sequential-analytic 
optimal stopping-time framework, where a decision maker at each 
point in time faces the choice of whether to signal the occurrence of a 
recession or not to signal one and wait for more observations.7 We 
instead examine these probabilities directly, treating them as forecasts 
in and of themselves, much like meteorological probability of precipita- 

6. The conditional probability I"' is equivalent to the transition probability (expansion 
regime to contraction regime) in a Markov formulation. 

7. In the optimal stopping-time framework, a turning point is deemed "imminent" if 
flt > fl*, a critical value chosen to yield a small probability type I error, at which point 
"sampling" stops. We make direct use of all probabilities and never stop sampling. 
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tion forecasts. The next section describes statistics that directly assess 
the informational content of such probability forecasts generated with 
the CLI. 

III. Evaluation of Probability Forecasts 

On an ex post basis, one may simply examine turning points in the 
composite leading index and tabulate their lead times relative to refer- 
ence cycle turning points. However, recognition of CLI turning points 
may be much more difficult in real time, so that truly objective evalua- 
tion requires ex ante real-time filtering rules, such as the sequential 
probability recursion (SPR), for detecting turning points in the CLI. In 
other words, while good ex post turning-point lead-time performance is 
a necessary characteristic of an ex ante useful CLI, it is not sufficient. 

An evaluation of the CLI can only be conducted within a given 
methodology for translating CLI movements into forecasts; thus, any 
such evaluation is conditional on the methodology adopted. A system- 
atic evaluation of the probability forecasts generated via the SPR has 
not yet appeared in the literature; here we perform such an evaluation 
by using a variety of techniques available for evaluating probability 
forecasts. We evaluate leading-indicator turning-point forecasts on a 
number of attributes, including accuracy, calibration, and resolution. 
Precise definitions of statistics measuring these attributes are given 
below, though not in their most general form where separate probabili- 
ties of many possible outcomes must be considered (see Diebold 1988). 
For our purposes, the universe consists of only two (mutually exclu- 
sive) events, the occurrence or nonoccurrence of a turning point, so 
the formulae simplify considerably. 

Our first attribute for forecast evaluation is accuracy, which refers to 
the closeness, on average, of predicted probabilities and observed real- 
izations, as measured by a zero-one dummy variable. Suppose we have 
time series of T probability forecasts {P,}T1, where P, is the probability 
of the occurrence of a turning point at date t (or, more generally, over a 
specific horizon H beyond date t). Similarly, let {R }T= 1 be the corre- 
sponding time series of realizations; Rt equals one if a turning point 
occurs in period t (or over the horizon H) and equals zero otherwise. 
The probability-forecast analog of mean squared error is Brier's (1950) 
quadratic probability score:8 

T 

QPS = 1/T I 2 (Pt -Rt)2. 
t= 1 

8. It is worth noting that use of such a quadratic loss function may not be appropriate 
in all contexts. In particular, loss, if symmetric, need not grow as the square of the error. 
It is also not clear that symmetric loss is appropriate. For example, if a forecaster is 
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The QPS ranges from 0 to 2, with a score of 0 corresponding to perfect 
accuracy. Moreover, the QPS has the desirable property of being 
strictly proper, meaning that it achieves a strict minimum under truth- 
ful revelation of probabilities by the forecaster. In addition, it is the 
unique proper scoring rule that is a function only of the discrepancy 
between realizations and assessed probabilities, as shown by Winkler 
(1969). 

We also consider another strictly proper accuracy-scoring rule, the 
log probability score (LPS), given by 

T 

LPS 1- 1T ,i [(1 - Rt) ln(1 - Pt) + Rt ln(Pt)1. 

The LPS ranges from 0 to oo, with a score of 0 corresponding to perfect 
accuracy. The LPS depends exclusively on the probability forecast of 
the event that actually occurred, assigning as a score the log of the 
assessed probability. In the two-event universe of this article, the LPS 
is a fully general scoring rule, because the probability forecast of a 
turning point (Pt) implicitly determines the probability forecast of a 
nonturning point (1 - Pt). The loss function associated with LPS dif- 
fers from that corresponding to QPS, as large mistakes are penalized 
more heavily under LPS. 

The calibration of a probability forecast refers to closeness of fore- 
cast probabilities and observed relative frequencies. Overall forecast 
calibration is measured by global squared bias: GSB = 2 (P - R) 
where P= 1/T T= Pt and R 1/T T= IRt. 

Clearly, GSB E [0,2], with GSB = 0 corresponding to perfect global 
calibration, which occurs when the average probability forecast equals 
the average realization. One can also consider the calibration of sets of 
probability forecasts. Partition the series of probability forecasts into 
j = 1, . . . , J cells with Ti forecasts in each cell (E Ti = T). Then, 
within-cell forecast calibration is measured by local squared bias: 

LSB = 1/T 2 Ti (Pi _ - i)2, 
ja 1 

where Pi is the within-cell average probability and Rj is the average 
realization of turning points associated with these forecasts. Like GSB, 
LSB E [0,2], and zero corresponds to perfect local calibration. While 
LSB = 0 implies GSB = 0, the converse is not true. 

Resolution (RES) measures the extent to which different forecasts 

penalized more heavily for "missing a call" (i.e., making a type 11 error) than for 
"signaling a false alarm" (i.e., making a type I error), then the appropriate loss function 
is asymmetric. 
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are in fact followed by different realizations. Formally, 

RES = 1/T 2 Ti ( - - R) 
j=1 

Thus, we measure resolution as a weighted average of squared devia- 
tions of cell realization means from the grand mean, where the weights 
are given by the number of probability forecasts falling within each 
cell. RES is simply a weighted variance of the Ri values (thus RES 2 
0), and high resolution indicates that discriminating predictive informa- 
tion is available. To see this, consider the case in which all cell means 
are equal to the grand mean. Then the forecast has no resolution at all 
(RES = 0), the cell means being constant (at R) regardless of the 
predicted probability values. Murphy (1973) has established the impor- 
tant decomposition: 

QPS = QPSconst + LSB - RES, 

where QPSconst is the QPS of the constant probability forecast R. 
We thus have three attrributes on which to evaluate probability fore- 

casts (given with their related scoring measures): accuracy (QPS, 
LPS), calibration (GSB, LSB), and resolution (RES). In Section V, we 
shall use these measures to actually "score" the composite index of 
leading indicators in the prediction of cyclical turning points. 

IV. Empirical Analysis-Generation of Probabilities 

To use the recursive formula of Section II to construct probability 
forecasts of business cycle turning points, we must obtain the transi- 
tion probabilities {Ft'} and {F'}, as well as the densitiesfd andfu, and an 
initial condition Hl0. The sequence of peak and trough conditional tran- 
sition probabilities depends on the stochastic structure generating re- 
gime lengths. Neftci (1982) calculates transition probabilities (expan- 
sion to contraction regime) that increase with the age of the regime by 
using the relative frequencies of observed CLI turning points. It is not 
clear, however, that the probability of a turning point should increase 
as current regime continues, for example, that a long expansion is more 
likely to end than a short one. In other work, we have presented 
evidence that the expansions and contractions in the American busi- 
ness cycle, particularly in the postwar period, are not characterized by 
duration dependence; thus, the probability of a turning point is roughly 
independent of the age of the regime.9 These results have been repli- 
cated for turning points in the CLI. Consequently, we provide sequen- 

9. See Diebold and Rudebusch (1988b, 1988c); see also McCulloch (1975). 
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tial probability forecasts using these time-invariant transition probabili- 
ties (i.e., F' = F' and rFd = rd). 

The sequential probability recursion also requires the probability 
density of the leading series given that the stochastic generating struc- 
ture is expansion (f(j)) and given that it is contraction (fd()). The 
leading series used in this paper is the percent change in the composite 
index of leading indicators. The division of the leading series into re- 
gimes depends on the underlying classification of economic activity. 
We have followed the Business Conditions Digest in denoting peaks 
and troughs of the CLI that correspond to the National Bureau of 
Economic Research (NBER) business cycle, and both chronologies are 
given in Appendix B. After grouping the leading indicator observations 
into two classes corresponding to upswing and downswing regimes, we 
estimate the relevant densities Ju and fd. We have experimented with 
several procedures to obtain these densities, and following Neftci 
(1982), all are based on the assumption of a simple probability structure 
of Xt of the form 

_ &u + ?E in expansions, 
xt I ol + ?Et in contractions, 

where o0U and otd are fixed and Eu and Ed are independently and identi- 
cally distributed (iid) zero-mean random variables with variances u2 
and Cd, respectively. This extremely simple model may be viewed as 
providing an approximation to a switching density, conditional on re- 
gime. 1 

To estimate fu and fd, we fit a simple normal density function to 
observations in each regime. The procedure is easily replicated and 
provides a good approximation to the underlying data. A number of 
completely nonparametric density estimates, such as those of Terrel 
and Scott (1985), were also considered with no substantive effect on 
the results. 

The final element in the sequential probability recursion is last pe- 
riod's posterior probability of a turning point. There are two correc- 
tions made to this probability in practice. First, at the start of a new 
regime, a start-up probability of zero is used as the previous period's 
probability. Also, as is clear from the formula, if the posterior probabil- 
ity reaches one at any point, it will force all remaining probability 
forecasts to be one in the regime. Thus, we put an upper bound of .95 

10. Extensions to time-varying intraregime conditional densities are straightforward 
conceptually but quite tedious in practice, as can be inferred from App. A. In particular, 
convenient analytic recursions, such as the SPR given above, are not available in the 
more general case. To the extent that superior approximations could be obtained from 
more sophisticated nonlinear models, our results provide a lower bound on the predictive 
performance of the CLI. 
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on the previous posteriori probability as it enters the recursive proba- 
bility formula. 

An example of probabilities obtained from the SPR is given in figure 
1. While a rigorous evaluation of these probabilities will be provided in 
the next section, it is helpful to first give some general discussion. In 
figure 1, the probabilities are obtained by using fitted normal densities 
f'(x,) and fd(x,) and a uniform transition prior: F' = .02 during expan- 
sions and Ftd = .10 during contractions, for all t. The dates of NBER 
peaks and troughs are denoted by vertical dashed lines. The turning 
point probabilities start in December 1948 and continue to August 1986. 
Those preceding a peak (trough) refer to the probability of the begin- 
ning of a recession (expansion). (In the figure, the probabilities are 
reported for 5 months past the turning point, but these late probabilities 
will not be scored.) The probabilities in figure 1 provide a signal for the 
onset of every recession except the very sudden downturn of 1981; 
however, the lead times of these signals are variable and, in particular, 
too long in 1957. Four false signals of recession are given: two major 
ones in 1951 and 1966, two minor ones in 1962 and 1984. It is instruc- 
tive to compare these SPR probability signals with those produced by 
alternative rules, such as three consecutive declines in the CLI. The 
plus signs (+) in figure 1 denote the third month in each string of three 
consecutive declines in the CLI. There is, in general, a correspondence 
between the triple decline signal and high probabilities of recession. 
The probability measure, however, gives more information, and it is 
sustained information of a quantitative type.11 The probability mea- 
sure, for example, clearly distinguishes the triple CLI decline in 1962 
as a false signal within 2 months while sustaining the recession signal in 
1969. In addition, this quantitative information is often given with a 
greater lead time as in 1979, where the probability of imminent reces- 
sion reaches 80 percent in the month before the third decline. The 
probabilities in figure 1 preceding a trough give the likelihood of an 
imminent upturn. There is no simple rule of thumb that signals troughs 
available for comparison, so we will defer further evaluation to Sec- 
tion V. 

Before scoring these probabilities, several qualifications and caveats 
should be noted. The probability estimates, while sequential and real 
time in spirit, are not completely ex ante, out-of-sample forecasts. 
First, they make use of some quantities, in particular the f' and fd 
densities, which are estimated over the entire sample. Second, the 
numbers used for the CLI are of a final revised form, whereas, in real- 
time forecasting, only preliminary and partially revised data are avail- 
able. In addition, the components of the CLI are often changed and 

11. The three-consecutive-declines rule ignores the magnitude of the fall in the CLI; it 
does not distinguish, e.g., between three 1% declines and three 0.1% declines. 
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reweighted ex post to improve performance over the sample. Thus, for 
instance, the 1971 CLI data that we use was not available in 1971 but is 
the most recent (1987) formulation of the CLI reconstructed for 1971. 
Completely ex ante forecasts would involve both a rolling sample con- 
struction of densities based on previous data and the use of the prelimi- 
nary and first-revision original construction CLI data that was avail- 
able in real time.12 

While the above two qualifications would tend to induce an overesti- 
mation of the performance of the CLI, there are also a number of lines 
of reasoning that suggest an underestimation of the performance of the 
CLI based on an incorrect assessment of false signals. First, note that 
we evaluate and score the CLI on how well it predicts NBER business- 
cycle turning points. Insofar as the CLI portends mere economic slow- 
downs and growth-cycle turning points and insofar as a policymaker 
is interested in an early warning of such near recessions, then the scor- 
ing of the CLI probability forecasts only with respect to business cy- 
cles may be misleading. (See J. Shiskin's comments following Hymans 
[1973].) A second and more subtle point is that if the leading indicators 
have been used in the formation of effective countercyclical policy, 
then they will be evaluated as less effective than they really are. For 
example, in 1966 the CLI signaled a forthcoming recession, and if 
policymakers took that signal and avoided a recession, then the signal, 
although a proper one, would be labeled, ex post, as false. 

With these qualifications of potential over- and underassessment of 
the CLI noted, we now provide a detailed analysis of the turning-point 
forecasts. 

V. Empirical Analysis-Scoring of Probabilities 
In this section, we analyze the sequential turning-point probability 
forecasts generated in the previous section. A comparison of the scores 
of SPR forecasts with other probability forecasts, including constant- 
probability forecasts and variants of the CLI three-consecutive- 
declines rule, allows us to provide a joint characterization of the 
usefulness of the SPR and the information content of the CLI. Tables 
1-6 present scoring attributes for probability forecasts of peaks and 
troughs generated by this variety of methods. Given differences in the 
dynamics of upswings and downswings, we might expect differences in 
predictive performance of the composite index of leading indicators 
when forecasting peaks versus troughs. This suggests that the actual 

12. Hymans (1973) examines, in the context of a simple forecasting rule, the effect of 
using original CLI data in forecasting and finds a negligible effect, while Zarnowitz and 
Moore (1982) find a somewhat larger effect. For further discussion of the properties of 
revisions in the leading indicators, see Diebold and Rudebusch (1988a). For a completely 
ex ante analysis, see Diebold and Rudebusch (1988b). 
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scoring calculations (rather than just choice of the transition probabili- 
ties FU and rd in the generation stage) should be performed separately 
on probabilities generated in expansions and contractions. 

Let us first evaluate the forecasts in terms of accuracy. Tables 1 and 
2 present the Quadratic Probability Score (QPS) and the Log Probabil- 
ity Score (LPS) for each forecasting technique. While both statistics 
measure accuracy, the implicit loss functions differ. The forecasting 
methods include a no-change, NAIVE forecast, which amounts to a 
constant zero probability forecast, P, = 0, of a downturn or upturn. 
This is the probability forecast analog of a random walk (in this case, 
QPS = 2 R). More generally, one can search in the zero-one interval 
for the number that is the most accurate as a probability prediction of 
turning points. Such optimal, CONSTANT probability forecasts are of 
the form P, = KU during expansions and P, = Kd during contractions, 
where the constants are chosen to minimize QPS or LPS. In the second 
row of table 1, for example, at a forecast horizon of 5 months, a 10% 
probability forecast of a downturn (KU = .10, given in parentheses 
below the score) is the most accurate constant-probability forecast. 
These optimal constant-probability forecasts are a natural first choice 
for the prior probabilities used in the generation of posterior turning- 
point probabilities via the SPR (i.e., fU = KU and rd = Kd in the rows 
labeled SPR). An alternative constant prior could be chosen by search- 
ing the zero-one interval for the constant prior that provides the most 
accurate probabilities generated via the SPR. Such probabilities 
(scored in rows SPR*) are the best that can be generated from the CLI 
by the SPR. Finally, two variants on the "three-consecutive-declines" 
theme for the prediction of downturns were evaluated. The simplest 
rule of three, denoted 3CD, produces probability forecasts of zero or 
one, depending on whether the most recent three observations have 
been negative. A number of methods were used, in an attempt to 
enhance these probability forecasts, with some success. In particular, 
a linear decay method is also scored (3CDa) where generated forecasts 
of unity are followed by .8, .6, .4, .2, 0.0 (unless, of course, three more 
consecutive declines occur, at which time the probability immediately 
returns to 1.0). 

A number of interesting features emerge from tables 1 and 2. All 
methods score best at short horizons (1-3 months), and predictive 
performance deteriorates with horizon. 13 In addition, as alluded to ear- 
lier, the predictive performance of all techniques differs sharply be- 
tween expansions and contractions. In particular, troughs are harder to 

13. This is consistent with the results of other studies on average lead time. While the 
performance of trough forecasts appears to improve at very long horizons (9-12 months), 
this is merely a manifestation of the fact that contractions typically are short, so that, 
given a long enough horizon, one can always obtain accurate, though useless, trough 
predictions by forecasting a turning point with probability one. 
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TABLE 1 QPS as a Function of Horizon, Various Forecasting Methods 

Forecast Horizon 

Method 1 3 5 7 9 13 

Prediction of peaks: 
NAIVE .04 .12 .19 .27 .35 .52 
CONSTANT .04 .11 .18 .24 .29 .38 

(Ku) (.02) (.06) (.10) (.14) (.18) (.26) 
SPR .29 .35 .38 .38 .41 .49 

(fU) (.02) (.06) (.10) (.14) (.18) (.26) 
SPR* .04 .12 .19 .23 .28 .39 

(fU) (10-7) (.0001) (.001) (.005) (.01) (.03) 
3CD .19 .23 .26 .28 .34 .50 
3CDa .24 .23 .23 .24 .29 .45 

Prediction of troughs: 
NAIVE .18 .55 .91 1.25 1.55 1.88 
CONSTANT .17 .40 .50 .47 .35 .13 

(K d) (.09) (.27) (.45) (.63) (.78) (.93) 
SPR .27 .41 .45 .48 .42 .17 

(rd) (.09) (.27) (.45) (.63) (.78) (.93) 
SPR* .15 .29 .39 .43 .37 .15 

(rd) (.005) (.07) (.23) (.39) (.95) (.97) 

NOTE.-The CONSTANT probability forecast is a constant (given in parentheses) that minimizes 
the QPS. The SPR probabilities use this constant probability as a prior (ru or fd, given in parenthe- 
ses). The SPR* probabilities are generated with the prior transition probabilities (given in parenthe- 
ses) that minimize the QPS. The forecast horizon is given in months, and the scoring sample is from 
December 1948 to December 1986. 

TABLE 2 LPS as a Function of Horizon, Various Forecasting Methods 

Forecast Horizon 

Method 1 3 5 7 9 13 

Prediction of peaks: 
NAIVE .27 .80 1.34 1.89 2.44 3.53 
CONSTANT .10 .22 .32 .40 .47 .57 

(.02) (.06) (.10) (.14) (.18) (.26) 
SPR .49 .60 .66 .66 .69 .85 

(.02) (.06) (.10) (.14) (.18) (.26) 
SPR* .13 .24 .35 .40 .48 .70 

(10-5) (.0003) (.002) (.005) (.02) (.05) 
3CD 1.33 1.56 1.80 1.89 2.37 3.45 
3CDa 1.26 1.27 1.30 1.38 1.73 2.81 

Prediction of troughs: 
NAIVE 1.26 3.77 6.28 8.63 10.68 12.87 
CONSTANT .30 .59 .69 .66 .54 .25 

(.09) (.27) (.45) (.63) (.78) (.93) 
SPR .56 .64 .73 .75 .64 .41 

(.09) (.27) (.45) (.63) (.78) (.93) 
SPR* .35 .48 .66 .70 .63 .41 

(.005) (.09) (.26) (.50) (.72) (.94) 

NOTE.-The CONSTANT probability forecast is a constant (given in parentheses) that minimizes 
the LPS. The SPR probabilities use this constant probability as a prior (ru or rd, given in parenthe- 
ses). The SPR* probabilities are generated with the prior transition probabilities (given in parenthe- 
ses) that minimize the LPS. The forecast horizon is given in months, and the scoring sample is from 
December 1948 to December 1986. 
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predict than are peaks. At a 3-month horizon, for example, SPR* has a 
QPS of .12 for peak prediction and a QPS of .29 for trough prediction. 

These accuracy scores shed light on two important additional issues: 
first, the performance of the SPR forecasts relative to other rules for 
interpreting movements in the CLI and, second, the performance of 
the CLI-based forecasts relative to benchmark naive and constant- 
probability forecasts. To address the first issue, compare the SPR* 
scores to those obtained from applying the three-consecutive-decline 
rules (3CD and 3CDa).14 These rules are in general outperformed by 
the SPR at all horizons; note, in particular, the poor log-probability 
scores obtained by the simple rules. With regard to the second issue, 
the information content of the CLI, we compare the SPR, SPR*, 
NAIVE, and CONSTANT forecast rows. While SPR* performs much 
better than the naive, no-change forecast, its comparative advantage 
relative to the optimal constant probability forecast (CONSTANT) is 
less pronounced. Relative performance differs significantly over ex- 
pansions and contractions: in the prediction of troughs, SPR* is gener- 
ally superior to CONSTANT, while the two methods produce similar 
results in the prediction of peaks. This holds true regardless of whether 
the QPS or LPS loss function is used. 

We can characterize the performance of the probability forecasts in 
greater detail by examining other scores. The extent of bias in the 
forecasts for various horizons is given in a global sense (GSB) over 
upswing and downswing observations in table 3. All forecasts except 
the naive, no-change forecast and the SPR forecast are well calibrated, 
that is, correct on average. The direction of the bias of the NAIVE 
forecast is, of course, one of underprediction of returning-point proba- 
bilities. For the SPR (where fU = KU, rd = Kd), however, the bias is one 
of overprediction of the probabilities of turning points.15 

The weighted average of the biases associated with particular fore- 
casts (e.g., the 25% probability forecast of recession compared with 
the associated realized relative frequency), or local squared bias 
(LSB), is given in table 4.16 Again, the overprediction bias of the SPR is 
evident. The local calibration of the SPR* forecasts is elucidated fur- 
ther by examining the relationship between the individual probability 
forecasts and resulting relative frequency of realizations (table 5). The 

14. An evaluation in which the predictive power of monetary and financial variables is 
explored and lead times are the sole evaluation criterion is provided in Palash and 
Radecki (1985) and favors the SPR. 

15. This is clear since the unbiased SPR* requires lower priors and hence involves 
lower posteriors. Since these optimal priors, which are natural ones to use, are unbiased, 
the overprediction or false alarm bias of the posterior SPR probabilities reflects either 
deficiencies in the CLI or in our application of the forecasting methodology. 

16. Following standard practice, our continuous probability forecasts were discretized 
by mapping [0, .1) into .05, [.1, .2) into .15, etc. This LSB discretization is responsible for 
the slight differences in GSB and LSB for the NAIVE and CONSTANT forecasts. 
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TABLE 3 GSB as a Function of Horizon, Various Forecasting Methods 

Forecast Horizon 

Method 1 3 5 7 9 13 

Prediction of peaks: 
NAIVE .00 .01 .02 .04 .06 .13 
CONSTANT .00 .00 .00 .00 .00 .00 

(.02) (.06) (.10) (.14) (.18) (.26) 
SPR .08 .11 .12 .12 .11 .10 

(.02) (.06) (.10) (.14) (.18) (.26) 
SPR* .00 .00 .00 .00 .00 .00 

(10-7) (.0001) (.001) (.005) (.01) (.03) 
3CD .01 .00 .00 .00 .02 .05 
3CDa .03 .02 .00 .00 .00 .02 

Prediction of troughs: 
NAIVE .02 .15 .41 .78 1.19 1.74 
CONSTANT .00 .00 .00 .00 .00 .00 

(.09) (.27) (.45) (.63) (.78) (.93) 
SPR .07 .06 .02 .00 .00 .00 

(.09) (.27) (.45) (.63) (.78) (.93) 
SPR* .00 .00 .00 .02 .05 .00 

(.005) (.07) (.23) (.39) (.95) (.97) 

NOTE.-The CONSTANT probability forecast is a constant (given in parentheses) that minimizes 
the QPS. The SPR probabilities use this constant probability as a prior (rU or rF, given in parenthe- 
ses). The SPR* probabilities are generated with the prior transition probabilities (given in parenthe- 
ses) that minimizes the QPS. The forecast horizon is given in months, and the scoring sample is from 
December 1948 to December 1986. 

TABLE 4 LSB as a Function of Horizon, Various Forecasting Methods 

Forecast Horizon 

Method 1 3 5 7 9 13 

Prediction of peaks: 
NAIVE .00 .00 .00 .02 .03 .08 
CONSTANT .00 .00 .00 .00 .00 .00 

(.02) (.06) (.10) (.14) (.18) (.26) 
SPR .25 .26 .23 .20 .19 .19 

(.02) (.06) (.10) (.14) (.18) (.26) 
SPR* .00 .03 .05 .05 .06 .06 

(10-7) (.0001) (.001) (.005) (.01) (.03) 
3CD .14 .10 .07 .05 .05 .09 
3CDa .20 .14 .08 .05 .04 .07 

Prediction of troughs: 
NAIVE .00 .10 .33 .66 4.04 1.56 
CONSTANT .00 .00 .00 .00 .00 .00 

(.09) (.27) (.45) (.63) (.78) (.93) 
SPR .14 .13 .12 .19 .13 .07 

(.09) (.27) (.45) (.63) (.78) (.93) 
SPR* .04 .03 .09 .12 .06 .04 

(.005) (.07) (.23) (.39) (.95) (.97) 

NOTE.-The CONSTANT probability forecast is a constant (given in parentheses) that minimizes 
the QPS. The SPR probabilities use this constant probability as a prior (rU or F", given in parenthe- 
ses). The SPR* probabilities are generated with the prior transition probabilities (given in parenthe- 
ses) that minimize the QPS. The forecast horizon is given in months, and the scoring sample is from 
December 1948 to December 1986. 
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TABLE 5 Reliability Analysis of SPR* Forecasts 

pi R3 Pi - RJ No. of Forecasts % of Forecasts 

Prediction of peaks: 
.05 .11 .06 201 57 
.15 .29 .14 28 8 
.25 .25 .00 14 4 
.35 .40 .05 15 4 
.45 .46 .01 6 2 
.55 .57 .02 9 3 
.65 .22 .33 9 3 
.75 .50 .25 10 3 
.85 .45 .40 19 5 
.95 .62 .33 42 12 

Prediction of troughs: 
.05 .24 .19 29 33 
.15 .14 .01 7 8 
.25 .14 .11 7 8 
.35 .40 .05 5 6 
.45 .40 .05 5 6 
.55 .75 .20 4 5 
.65 1.00 .35 4 5 
.75 .50 .25 6 7 
.85 .33 .52 6 7 
.95 1.00 .05 15 17 

NOTE.-For expansions H = 12 and r = .03; for contractions H = 5 and r = .23. 

actual frequency distribution of probability forecast values is also 
show. Taken together, the entries in the table enable us to examine the 
joint distribution of forecasts and realizations, as factored into the 
distribution of realizations conditional on forecasts and the marginal 
distribution of the forecasts. For illustrative purposes, we constructed 
table 5 using a horizon of 12 for expansions and a horizon of 6 for 
contractions, with optimal transition probabilities of .03 and .23, re- 
spectively. The feature of note (for both expansions and contractions) 
is the local bias associated with both very small probability forecasts 
and very large probability forecasts, which illustrates the problem of 
false alarms and missed calls. The mid-range probability forecasts, 
however, display little systematic bias. 

The resolution (RES) scores, given in table 6, provide insight into the 
value of SPR and SPR* forecasts and the information which they trans- 
mit as they range through the [0,1] interval. Resolution is high if, on 
average, different forecasts tend to be followed by different realiza- 
tions, so that movements in forecast probabilities convey meaningful 
information. First, compare the NAIVE and CONST forecasts, which, 
by definition, have zero resolution.17 3CD and 3CDa fare somewhat 
better, but the restrictive nature of the forecasts generated by these 

17. For a constant forecast, the grand realization mean is equal to the mean realization 
in the one cell in which all forecasts lie. 
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TABLE 6 RES as a Function of Horizon, Various Forecasting Methods 

Forecast Horizon 

Method 1 3 5 7 9 13 

Prediction of peaks: 
NAIVE .00 .00 .00 .00 .00 .00 
CONSTANT .00 .00 .00 .00 .00 .00 

(.02) (.06) (.10) (.14) (.18) (.26) 
SPR .00 .02 .04 .06 .07 .08 

(.02) (.06) (.10) (.14) (.18) (.26) 
SPR* .00 .01 .03 .06 .07 .07 

(10-7) (.0001) (.001) (.005) (.01) (.03) 
3CD .00 .00 .01 .02 .02 .02 
3CDa .00 .02 .04 .06 .06 .04 

Prediction of troughs: 
NAIVE .00 .00 .00 .00 .00 .00 
CONSTANT .00 .00 .00 .00 .00 .00 

(.09) (.27) (.45) (.63) (.78) (.93) 
SPR .04 .12 .17 .17 .05 .03 

(.09) (.27) (.45) (.63) (.78) (.93) 
SPR* .06 .14 .20 .16 .05 .02 

(.005) (.07) (.23) (.39) (.95) (.97) 

NOTE.-The CONSTANT probability forecast is a constant (given in parentheses) that minimizes 
the QPS. The SPR probabilities use this constant probability as a prior (rU or rF, given in parenthe- 
ses). The SPR* probabilities are generated with the prior transaction probabilities (given in parenthe- 
ses) that minimize the QPS. The forecast horizon is given in months, and the scoring sample is from 
December 1948 to December 1986. 

methods (e.g., probabilities of only 0.0 or 1.0 for 3CD) results in low 
RES. The RES is highest for the SPR and SPR* forecasts, reflecting 
the fact that different forecasts do tend to be followed by different 
realizations, so that movements in the generated probabilities through 
the [0,1] interval contain useful information. In addition, RES is high- 
est in contractions. Were it not for this fact, SPR and SPR* trough 
prediction performance in terms of QPS and LPS would be substan- 
tially worsened. 

VI. Concluding Remarks 

We have examined the performance of a Bayesian sequential probabil- 
ity forecasting recursion, with the Composite Index of Leading Indi- 
cators. Performance was evaluated in a number of dimensions, includ- 
ing accuracy, calibration, and resolution. One clear result for good 
forecast performance, as well as proper forecast evaluation, was the 
need for prior transition probabilities, densities, horizons, and scorings 
that separated expansions and contractions. Furthermore, this sug- 
gests that leading economic indicators might usefully be specialized 
during expansions for the prediction of peaks and during contractions 
for the prediction of troughs. In other words, the use of two indexes, an 
"expansion index" and a "contraction index," constructed with dif- 
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ferent components and component weights, could enhance predictive 
performance. 

The sequential probability recursion was the best method of those 
considered for forecasting turning points, especially given its firm 
grounding in probability theory and its ability to forecast both peaks 
and troughs. The absolute performance of the sequential probability 
recursion in terms of accuracy, like all the other forecasting methods, 
was worse in contractions. Its performance relative to other methods, 
however, was best in contractions. We also examined forecast cali- 
bration and resolution, the underlying determinants of accuracy. The 
calibration analysis showed that most bias could be traced to those 
probability forecasts near zero or one, illustrating the unavoidable pos- 
sibilities of "false alarms" and "missed calls." The sequential proba- 
bility recursion performed best in terms of resolution, which indicates 
that useful information is conveyed by movements in its probability 
forecasts. 

Whether the increased resolution afforded by use of the sequential 
probability recursion in forecasting with the CLI is sufficient to make it 
the forecasting method of choice depends on the loss function used for 
accuracy evaluation. Recall, for example, that the QPS may be decom- 
posed into the QPS of a particular constant probability forecast, plus 
LSB, less RES. More generally, however, one can imagine less restric- 
tive loss functions such as 

L = f [f(R), LSB, RES]. 

Even if a linear form is adopted, for example, we need not impose the 
weights of 1, 1 and - 1 which correspond to QPS. To the extent that 
the partial derivative of L with respect to RES is negative and suffi- 
ciently large (in absolute value), the sequential probability recursion 
can be expected to perform well. Moreover, loss functions that place 
relatively high (in absolute value) weight on RES may be a good ap- 
proximation to those of many forecasters and policymakers. To see 
this, look at figure 1 and ask yourself, "Which would be more useful to 
me, the SPR forecasts shown in the figure, or, for example, a constant- 
probability forecast (that would appear in the figure as horizontal lines 
in expansions and contractions)?" Many, for better or for worse, 
would probably choose the former. 

Appendix A 

Derivation of the Sequential Probability Recursion 

In this appendix, we provide a proof of the sequential probability recursion 
along the lines of Neftci (1980). Let Z be an integer-valued random variable 
denoting the value of the time index in the first period after the turning point in 
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the leading series X. (That is, if Z = 10, then the turning point has occurred 
between periods 9 and 10.) At time t we calculate a probability for the event Z 
- t, that is, that by time t the turning point has occurred. We have an a priori 
probability (at time t) denoted P(Z c t). We also receive sequential observa- 
tions on X, and at time t, we have t + 1 observations, denoted (xo, xl, . t,) 

=xt. 
The posterior probability of Z c t at time t is given immediately by Bayes's 

rule, as in the text. This can be rewritten as 

>E P(XtlZ = i)P(Z = i) 
P(Z c 4x) = , i=O . (A1) 

[>P(Xlz = i)P(Z = i + P(XtIZ > t) P(Z > t) 
i=o 

Consider first the numerator, which we denote by A,: 

A, = P(xO, . . , x,IZ = O)P(Z = 0) + > P(x,... ., x,Z = i)P(Z = i). (A2) 
i= 1 

Recalling that, if Z = i, then (xo, ... , xi= 1) and (xi, ... , x,) have different (and 
independent) distributions, we rewrite this as 

A, = P(xO, ... , x,IZ = O)P(Z = 0) 
t (A3) 

+ >3 [P(xo . . . xi-_llZ = i)P(xi, . . . , xtlZ = i)P(Z = i)]. 
i=l 

In period (t + 1), we have (A4): 

A,+ 1 = P(xO, .. . , x,+ lZ = O)P(Z = 0) 

+ > [P(xo, . .. ., xi-iIZ + i)P(xi, . .. ., xt+1Z = i)P(Z = i)] (A4) 
i=l1 

+ P(xO,.. ., Xt+ iIZ = t + 1)P(Z= t + 1). 

Making use of the usual factorization, we obtain 

A,+ 1 = P(xo, . .. , x,IZ = O)P(x,t+ IZ = 0, xo, ... , x,)P(Z = 0) 
t 

+ [P(xO, ... , xi- lZ = i)P(xi ... , x,Z= i) 
i=l 

x P(Z = i)P(x,+ IZ= i, xi, .. . , x,)] (A5) 

+ [P(xO, . . . , xt IZ = t + 1)P(x,+iIZ = t + 1, X0, . . . , x,) 

x P(Z = t + 1)]. 
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Thus, 

At+,1 =AtP(xt+iIZ = t + 1, xo, . . . , x,) 

+ P(Z = t + 1)P(xo, . . .,xtlZ = t + 1) (A6) 

x P(xt + IZ = t + 1,xo, . .xt). 

Now if we write 

fit = A+ (A7) 
At + B, 

so that 

Bt = P(xo, ... , xt/Z > t)P(Z > t), (A8) 

then we immediately obtain the recursion 

Bt+I = BtP(xt+|x0, .+ . ., xt, Z > t + 1) P(Z > t + 1) (A9) 
P(Z > t) 

Now note that 

Ht+ = Bt+ I (AIO) 
At+, + Bt+1 

and substitute (A6) and (A9) to get 
C 

t+ = C+D' (All) 

where C = [fIt + P(Z = t + ljZ > t) (l - 11t)] [P(xt+ 1jxo, . . *, xt, Z - t + 1)], 
andD = (1 - Ht)P(xt+llxo, . . . ,xt,Z>t + 1)[1 - P(Z = t + l|Z>t],after 
applying (A7) and (A8) and some tedious algebra. 

To work the proof for continuous X, we realize that we have implicitly been 
working with the sample space partition 

At = {G)El:Xo<Xo<xo + h,. .. ,x<X <xt + h}. 

Letting h -O 0, we again obtain (Al 1), except that now the conditional probabil- 
ities 

P(Xt+ ixo, . * * , X,, Z = t + 1) 

and 

P(xt+ ixo . . . , Xt, Z > t + 1) 

are replaced by the equivalent conditional densities 

f(xt+ Ixo, ... , x,,Z - t + 1) 

and 

f(Xt+ilxo . . ., xt, Z > t + 1). 
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These are, respectively, the densities 
fd(X +1.|X) 

and 

fU(xt+ IIX) 
given in the text, shifted forward one period. 

Appendix B 

Business Cycle Chronologies 

The NBER dating, year and month, of the postwar business cycles is given in 
the right-hand column below. The chronology of turning points in the compos- 
ite index of leading indicators (taken from the Business Conditions Digest, 
chart IA) is given in the left-hand column. Peaks and troughs are considered to 
be members of the "old" regime; thus, a peak (trough) is the last observation in 
an expansion (recession). 

TABLE Bi 

CLI NBER 
Turning Points Turning Points 

Trough 1949: 6 1949: 10 
Peak 1953: 3 1953: 7 
Trough 1953:11 1954: 5 
Peak 1955: 9 1957: 8 
Trough 1958: 2 1958: 4 
Peak 1959: 5 1960: 4 
Trough 1960:12 1961: 2 
Peak 1969: 4 1969:12 
Trough 1970:10 1970:11 
Peak 1973: 3 1973:11 
Trough 1975: 2 1975: 3 
Peak 1979: 3 1980: 1 
Trough 1980: 5 1980: 7 
Peak 1981: 4 1981: 7 
Trough 1982: 3 1982:11 
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