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We examine persistence in U.S. aggregate output by estimating fractionally integrated ARIMA 
models. These models provide better low-frequency approximations to the Wold representation 
than previous stochastic specifications, and earlier results on the importance of a permanent 
component emerge as special cases. We find evidence of long memory, which induces persistence, 
though this long memory need not be associated with a unit root. Our point estimates indicate 
that macroeconomic shocks, while persistent, are distinctly less persistent than many earlier 
studies suggest; however. confidence intervals associated with the long-run response are quite 
wide. 

1. Introduction 

In the last five years, the permanent nature of macroeconomic fluctuations 
has become the subject of intense debate. Starting with Nelson and Plosser 
(1982), some have taken issue with the traditional view that macroeconomic 
time series are well described as transitory deviations from a deterministic 
trend. Instead, it has been suggested that aggregate output contains a substan- 
tial permanent component; that is, a given movement in aggregate output will 
persist and will not necessarily be reversed in the future through reversion to 
trend. Campbell and Mankiw (1987a), for instance, fit autoregressive inte- 
grated moving-average (ARIMA) models to post-war real gross national 
product (GNP) and conclude that a 1 percent innovation to current GNP 
should change long-run forecasts of GNP by more than 1 percent. 
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We contribute to this debate by examining the low-frequency components 
in real output movements in greater detail than has been done previously. The 
results have implications for the nature and existence of business cycles, the 

persistence of macroeconomic shocks, and the specification of statistical 
models of economic fluctuations. We explore an approximation to the Wold 
representation that is more general than, and includes as special cases, the 
ARIMA and unobserved-components (UC) representations that have been 
used by others. We use long-memory, fractionally integrated representations 
that allow for increased flexibility in modeling low-frequency dynamics. The 
results provide a unification of existing disparate persistence estimates as well 
as, given the wide confidence intervals obtained, a cautionary note against 
focusing on any point estimate of the permanent component on the basis of a 
limited span of macroeconomic data. 

In the next section, we discuss the importance of understanding the nature 
of persistence in aggregate output and describe our measure of persistence. In 
section 3, the fractionally integrated ARIMA model is introduced and eco- 
nomic motivation is provided. Section 4 describes the estimation procedure 
employed. Empirical results are contained in section 5, and section 6 con- 
cludes. 

2. Measuring the permanent component 

A measurement of the permanent component in aggregate output is crucial 
to both the theory and practice of macroeconomics. The presence of a large 
permanent component would imply that a substantial portion of a given 
macroeconomic shock to the economy would persist through time. This 
conflicts with traditional formulations of both Keynesian and Classical 
macroeconomic theories, where output fluctuations, from a variety of causes, 
are temporary deviations from a slowly growing natural or equilibrium level of 
output. A large permanent component implies instead that almost all fluctua- 
tions in output represent permanent movements. Such fluctuations require 
description within an intrinsically stochastic economic theory, since determin- 
istic models cannot be regarded as even approximately true when reversion to 
deterministic equilibrium paths is absent. l In addition, all of the standard 
econometric tasks - estimation, hypothesis testing, prediction, and control - 
are sensitive to the presence of a permanent component. 

For policymakers, the implications of macroeconomic persistence are just as 
unsettling. Strong persistence would call into question, at a fundamental level, 
the appropriateness of countercyclical policy. If the cyclical component is 
insignificant in aggregate output and there is no steady trend to which to 

‘Much recent work on stochastic growth models, such as King, Plosser, and Rebello (1988), is at 
least partially motivated by this fact. 
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return the economy, attempts at countercyclical policy are at best misguided. 
In addition, when each movement in output is largely permanent, the costs 
and benefits of policy actions are far different than when movements are 
transitory; the price of higher or lower output over the whole future path of 
the economy must be weighed in the policy calculus. 

Much of the empirical literature relevant to the persistence debate examines 
the existence of a permanent component, which provides, as we shall discuss 
below, a first step to the more interesting question of the importance of the 
permanent component. The existence of a permanent component is commonly 
examined by testing for unit roots in autoregressive lag-operator polynomials. 
If a unit root is found in an ARMA representation, then, as shown by 

Beveridge and Nelson (1981), the series may be decomposed into the sum of a 
random walk component and a stationary component. The permanence of the 
random-walk movements implies a permanent component in the original 
series. 

To formalize matters, consider the ARMA model 

@(L)y,= O(L)&,, E, - (0, o:)? (1) 

where Q(L)=1 -c#QL- ... -r$,Lp, O(L)=l-B,L- ... --OqL”, all roots 
of Q(L) are on or outside the unit circle, and all roots of O(L) are outside the 
unit circle. If G(L) has a unit root, it is assumed to be positive and real, in 
which case we can difference the series and write G(L) = (1 - L)@‘(L), where 
Q’(L) is of order p - 1; thus, the process is ARIMA( p - 1, 1,q). 

The Dickey-Fuller tests [e.g., Fuller (1976)] and generalizations by Phillips 
(1987) and others have been widely applied in economics to test the unit-root 
hypothesis. Most such studies conclude that real output and many other 
economic time series are well described by low-order ARMA processes with a 
single unit root.2 Broad surveys such as Nelson and Plosser (1982) and 
Schwert (1987). which make use of a variety of unit-root tests on scores of 
economic variables, find pervasive and robust evidence of unit roots. In 
addition, the growing literature documenting cointegration in various eco- 
nomic relationships implicitly extends the above list, because cointegrated 
variables have unit roots in their univariate representations. In this paper, we 
provide qualification to the wide-ranging evidence on the existence of unit 
roots, and more crucially their importance, by considering more general 
models that allow for rich low-frequency dynamics and include unit roots as a 
special case. 

While the presence of a unit root in real output provides evidence for the 
existence of persistence, the more relevant question for macroeconomic analy- 
sis involves quantifying the extent of that persistence. We are more interested 

‘See. for example. Stock and Watson (1986), Perron and Phillips (1987). and Campbell and 
Deaton (1987). 
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in the size or importance of the response of output to a unit innovation than in 
the mere existence of some nonzero response. One measure of persistence, 
used by Watson (1986) Campbell and Mankiw (1987a, b), and others, is the 
cumulative impulse-response function, i.e., the sum of the coefficients of the 

moving-average lag-operator polynomial of the first-differenced series. Specif- 
ically, consider 

Ar,=A(L)e,= (1 +a,L+a,L*+ +t. (2) 
The impact of a unit shock in period t on the growth rate of Y at time t + k is 
ak, while the impact on the level of Y at time t + k is ck = 1 + a, + . . . +a,. 
In the limit, we obtain cm, which is the effect of a unit shock today on the level 
of Y infinitely far in the future. For any stationary or trend-stationary series, 

e, = 0, because the effect of any shock is transitory as reversion to mean or 
trend eventually dominates. For a random walk, c, = 1; that is, the effect of 
any shock is exactly permanent. In general, unit roots lead to a nonzero 
long-run response; however, the particular value of c, depends on the specific 
parameterization of the process. 

Any reasonable persistence measure must be related to the form of the 
Wold-representation lag-operator polynomial A(L), which completely charac- 
terizes the mapping from inputs {E*} to outputs {Y}. This is true of all 
persistence measures that have appeared in the literature, including the height 
of the spectral density of AY at frequency zero, the proportion of variation in 
AY due to movements in the underlying random-walk component, or the 
limiting value of Cochrane’s (1988) variance ratio.3 In this paper, we part with 
the tradition of using the infinite cumulative response, c,, to measure persis- 
tence and instead examine the entire sequence of cumulative impulse re- 
sponses, C = { 1, cr, cz, c3,. . . , c, }. We use C to study persistence, because it 
directly answers the question of interest: ‘How does a shock today affect the 
level of output in the short, medium, long, and very long run?’ For example, 
with quarterly data, cd0 is the impact of a unit shock on the level of output ten 
years hence. This approach is more informative than concentrating on cm, 
because the economic horizons of interest are typically much shorter than 
infinity. In the long-memory models that we consider below, the cumulative 
impulse response, even at quite long horizons, can differ substantially from c,. 

3. Modeling the permanent component 

The modeling of persistent processes is an issue closely related to the 
measurement of persistence; in particular, construction of the cumulative 
impulse-response sequence requires estimates of the parameters of the 

3A more detailed discussion of alternative persistence measures and their interrelationships is 
contained in Diebold and Nerlove (1989). 
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moving-average representation. A number of authors have recently addressed 
the issue of modeling persistence in real output, notably Campbell and 
Mankiw (1987a), who use unrestricted ARIMA representations. Fitting an 
ARIMA(2,1,2) model to the logarithm of post-war quarterly real GNP, they 
obtain a c, persistence estimate of 1.52, so that a unit innovation leads to a 
long-run response substantially larger than the initial innovation. This striking 
result of very strong shock persistence (and, in fact, shock magnification) runs 
counter to the findings of Watson (1986) and Clark (1987), who obtain smaller 
estimates of persistence (c, = 0.6) with estimated unobserved components 
(UC) models.4 They argue that the long-run behavioral implications of the 
unrestricted ARIMA models are misleading because such models concentrate 
on representations of the short-run dynamics. Both Watson and Clark note, 
however, that the UC model can be viewed as a special case of the more 
general ARIMA model: UC models are simply (nonlinearly) restricted ARIMA 
models.5 Campbell and Mankiw (1987b) argue that the restrictions implied by 
the UC specification are unsupported. 

We believe that there is some truth in both of these arguments. On the one 
hand, long-run properties of data series are likely to be difficult to determine 
in the context of an unrestricted ARIMA model. Mean reversion in economic 
time series depends crucially on correlations at long lags, which easily can be 
misspecified in simple,ARIMA representations [see, e.g., Gagnon (1988)]. We 
shall provide implicit support for this thesis below. We assert, however, that 
what is required is not a specialization of the ARIMA model but a generaliza- 
tion, one that can capture a variety of long-run, low-frequency responses. Very 
high-order .autoregressive models could capture such responses if degrees of 
freedom were plentiful; instead, we adopt a parsimonious model that achieves 
the same goal. Furthermore, our specification nests both the ARIMA and UC 
models. 

Specifically, consider a generalization of the ARIMA( p, d, q) model to 
allow fractional integration, 

@(L)(l - qdy,= O(L)EI, E, - (0, ‘J:), (3) 

where G(L)=1 -+iL- ... -$,LP, O(L)=1 -B,L- .e. -OqLq, all roots 
of @(L) and O(L) lie outside the unit circle, and d is allowed to assume 
values in the real, as opposed to the integer, set of numbers.6 Econometricians 

4Like Campbell and Mankiw. of course, Watson obtains high persistence estimates (c, = 1.5) 
from unrestricted ARIMA models. 

‘In particular, the restrictions implied by common UC representations force cm to be less than 
unity. 

%tationarity and invertibility require IdJ < :, which can always be achieved by taking a suitable 
number of differences. In what follows, we achieve a local generalization of unit root behavior by 
considering $ < d < 2 ; note that the first-differenced series then has an integration order less than : 
in absolute value, so that stationarity and invertibility are achieved. 
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typically have considered only integer values of d; the leading special cases are 
the discrete options d = 0 (stationarity) and d = 1 (unit-root nonstationarity). 
Formally, however, an integer-d restriction in eq. (3) is arbitrary. We shall 
demonstrate that noninteger d values, i.e., fractional integration, provide for 
parsimonious yet flexible modeling of low-frequency variation; we denote such 
models as ARFIMA (AutoRegressive Fractionally Integrated Moving Aver- 
age) models. 

The ARFIMA model can be put in the moving-average form (2). First, write 
eq. (3) as 

(1 - Lyy= B(L)E,, 

where B(L) = W ‘( L)O( L). Extracting the factor (1 - L) gives 

(l- Ly(l- L)y=B(L)&, 

(4) 

(5) 

or 

(l- L)Y,=A(L)Et, (6) 

where A(L) = (1 - L)‘-“B(L).’ Operationally, a binomial expansion of the 
operator (1 - L)d is used, 

(1 _L)‘,= .f r(j-d)L’ 
/co r(-4rCj-t 1) 

=l-dL+ 
4WL2_ d(d- I)@- 2) L3 + . . . 

2! 3! 
) (8) 

where r( 0) denotes the gamma, or generalized factorial, function. Thus, the 
filter (1 - L)d provides an infinite-order lag-operator polynomial with slowly 
and monotonically declining weights. 

The ARFIMA model (3) belongs to the class of long-memory processes, so 
named for their ability to display significant dependence between observations 
widely separated in time.* Standard ARMA processes are often labeled 
‘short-memory’ processes because the dependence between observations T 
periods apart decays rapidly as 7 increases; indeed, it is well known that for 

‘More generally, we can allow for drift, (1 - L)y = p + A( L)E,, as is done in the estimation 
reported below. 

‘Long-memory processes have their genesis in physics and in early hydrological work, such as 
Hurst (1951). Mandelbrot (1972) formalized many of the empirical insights about these processes 
and proposed R/S analysis, an early technique to characterize the extent of persistence. [For an 
application and generalization of R/S analysis, see Lo (1988).] Granger and Joyeux (1980) and 
Hosking (1981) independently proposed the use of fractionally integrated ARIMA procedures as 
long-memory models. 
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Table 1 

Autocorrelation functions for AR(l) and ARFIMA(0. d,O). 

1 2 3 

Lag (7) 

4 5 10 25 50 100 

(1 - 0.5L)y, = E,, p(7) = 0.50 0.25 0.13 0.06 0.03 0.00 0.00 0.00 0.00 
(1 - L)“y = E,. p(7) = 0.50 0.40 0.35 0.32 0.30 0.24 0.18 0.14 0.11 

large T ARMA autocorrelations decay approximately geometrically, 

where r is a constant such that jr] < 1. ARFIMA processes, however, have a 
slower hyperbolic autocorrelation decay; for large r we have the approxima- 
tion 

py( T) - T2d-1, d< :, dz 0. 

To see how the autocorrelations vary with fractional d, it is instructive to 
consider pure fractional noise, denoted ARFIMA(0, d, 0), given by 

(1 -LyY,=E(. (9) 

Table 1 provides a comparison of the r th-order autocorrelations of fractional 
noise with those of a first-order autoregression [AR(l)]. The two models are 
parameterized to provide the same first-order autocorrelations, but as the 
interval between observations increases, the autocorrelations diverge. At lag 
25, the AR(l) correlation is approximately 0.0, while the fractionally inte- 
grated series has a correlation of 0.18. 

The intuition of long memory and the limitation of the integer-d restriction 
emerge clearly in the frequency domain. The series { Y,} displays long memory 
if its spectral density, fr, increases without limit as angular frequency tends to 
zero. 

limfr(X) = cc. 
X-O 

(10) 

In fact, for an ARFIMA series, jr(X) behaves like h-2d as X --) 0, so d 
parameterizes the low-frequency behavior. This is in contrast to the usual 
ARIMA model with d = 1, where the spectral density is forced to behave like 
h-* as X -+ 0. Thus, a rich range of spectral behavior near the origin becomes 
possible when the integer-d restriction is relaxed. The ARFIMA model, by 
allowing a variety of spectral shapes near the origin (corresponding to the 
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continuum of possible d values), can provide superior approximations to the 
Wold representations of economic time series. Indeed, the ‘typical spectral 
shape’ of economic variables [Nerlove (1964) and Granger (1966)], which has 
power that monotonically declines as frequency increases (except at seasonals), 

is well captured by the fractionally integrated process with d between zero 
and one. The fact that many economic time series in level form have spectra 

that appear to be infinite at the origin might suggest that a first difference is 
appropriate; however, after differencing, these time series often have no power 
at the origin, suggesting that a first difference is ‘too much’. Such behavior is 
characteristic of a fractionally integrated process with d between zero and one 
[see Granger and Joyeux (1980)]. 

The potential macroeconomic relevance of the ARFIMA representation is 
also established by Granger (1980,1988), who describes how fractional inte- 
gration can be induced by aggregation. Specifically, if the underlying compo- 
nents of an aggregate series (e.g., individual firms’ productions) follow AR(l) 
processes with parameters p, and the p,‘s are beta-distributed in the cross-sec- 
tion, then aggregation yields a fractionally integrated macroeconomic series. 
An example of a theoretical macroeconomic model producing fractionally 
integrated output is provided by Haubrich and Lo (1988), who exploit 
Granger’s aggregation result in a real business cycle model with beta-distrib- 
uted intrasectoral input-output coefficients to obtain fractionally integrated 
aggregate output. 

4. Estimation of fractionally integrated models 

The long-memory aspects of fractionally integrated ARIMA models make 
their estimation more difficult than the usual ARIMA model with integer d. 
We use a two-step estimation procedure suggested by Geweke and Porter- 
Hudak (GPH) (1983). We first obtain a consistent and asymptotically normal 
estimate of d and transform the series by the expansion of (1 - L)d. We then 
fit an ARMA model to the transformed series to obtain consistent estimates of 
the remaining model parameters @, 0, and a,. * 9 Finally, these estimates are 
used to construct consistent estimates of the sequence of cumulative impulse 
responses. 

The first-stage estimate of d is based on the order of the spectral density 
function near X = 0. We start with the first difference of the relevant series, 
denoted X, = (1 - L)Y,; thus, we wish to estimate 2 in the model 

(1 - L)jX,= @-‘(L)O(L)E(= U,. 01) 

‘The possibility of maximum-likelihood estimation (MLE) has also received some attention, as 
in Brockwell and Davis (1987) and Sowell (1987). Both the two-step procedure and MLE have 
associated costs and benefits; however, the former has certain advantages that make it our method 
of choice for the present application, as discussed below. 
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As d of the level series equals 1 + & a value of Jequal to zero corresponds to 
a unit root in Y,. 

The spectral density of X, is given by 

fx(X) = II- exp( -iX) IP2”f,(h) = [2sin(X/2)]-2Bf,(h), (12) 

where f,(h) is the spectral density of the stationary process u,. Suppose that a 
sample of size T is available {X,,t=l,...,T}; let hJ=2rj/T (j=O,..., 
T - 1) denote the harmonic ordinates of the sample. Taking logarithms of eq. 
(12), adding and subtracting In{ f,(O)}, and evaluating 
nates, we obtain 

In{ fx( A,)} = ln{ f,(O)} - Jln{4sin2(X/2)} 

at the harmonic ordi- 

+ ln{ f,@,)/f,(O)}. 

(13) 

If we restrict consideration to the low-frequency ordinates near zero, say, X,, 
j I K K T, the last term in (13) can be dropped as negligible. Let Z(X,) denote 

the periodogram at ordinate j, then add In{ Z(hj)} to both sides of (13) and 
rearrange to obtain 

In{ I( X,)} = In{ f,(O)} - Jln(4sin2( A/2)} + ln{ I( h,)/f,( A,)}. 

The particular utility of this formation is its formal similarity to a simple 
linear regression equation, 

ln{Z(h,)} =&+P11n(4sin2(A,/2)] +II,, j=l,..., K, (15) 

where &, is the constant In{ f,(O)}, and the nj, equal to In{ Z( A,)/f,(h,)}, are 

independently and identically distributed across the harmonic frequencies. 
Now let the number of low-frequency ordinates used in the above spectral 

regression be a function of the sample size, i.e., K = g(T). Then, under 
regularity conditions on g(e), the negative of the OLS estimate of the slope 
coefficient provides a consistent and asymptotically normal estimate of 8.” 
This is true regardless of the orders and parameterizations of the @ and 0 
polynomials underlying the stationary process u,. Furthermore, the variance of 
the estimate of b, is given by the usual OLS estimator, and the theoretical 

“Based upon theoretical considerations and Monte Carlo simulations, Geweke and Porter- 
Hudak (1983). Brockwell and Davis (1987), and Shea (1989) recommend using g(T) = T”. and 
obtain good results with a = 0.5. Thus, for example, in a sample of size 144. the first twelve 
periodogram ordinates would be used. 
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asymptotic variance of the regression error q,, is known to be equal to 77*/6, 
which can be imposed to increase efficiency. A formal statement of the 
Geweke and Porter-Hudak theorem appears in the appendix. 

Given an estimate of 2, we transform the series X, by the long-memory 
filter (8) truncated at each point to the available sample. The transformed 
series is then modeled as an ARMA( p, q) process. Because the estimate of the 
order of fractional integration from the periodogram regression is consistent, 
the second-stage estimates of @ and 0 are also consistent. Finally, consistent 
estimates of the sequence of cumulative impulse responses, C, are constructed. 

It is worth noting at this point the benefits of the semiparametric first-stage 
estimator of 2 (and hence d); its asymptotic distribution does not depend on 
the infinite-dimensional nuisance parameter @- ‘( L)O( L). This is a desirable 

property in the present application, because the estimate of C turns out to 
depend largely on the estimated value of d, not on the estimates of the 
parameters in @ and 0. Thus, it is valuable to have an estimator of d whose 
properties do not depend on correct specification of Qi and 0, the orders of 
which are typically unknown a priori. Alternative procedures such as simulta- 
neous maximum-likelihood estimation of d, @, and 0, which may have certain 
desirable properties under correct model specification, may be inconsistent 
under misspecification of @ and 0. 

5. Empirical results 

In this section, we examine evidence for fractional integration in ten 
different measures of U.S. macroeconomic activity. These include post-war 

quarterly real GNP, which was used in Campbell and Mankiw (1987a, b), as 
well as post-war quarterly real GNP per capita. Real GNP is the most 
comprehensive measure of the macroeconomy; however, we will focus much of 
our attention on per capita GNP because movements induced in aggregate 
output by a varying population will be naturally persistent and may obscure 
the persistence intrinsic to the market economy, which is our main interest. 

We also examine the Federal Reserve Board’s index of industrial production 
on a quarterly basis. This provides a more specialized measure of real output, 
including just the manufacturing, mining, and utilities sectors (which account 
for roughly one-fourth to one-third of GNP), but over a substantially longer 
time range (191991987). In addition, we are able to control for seasonality and 
the effects of seasonal adjustment filters by examining both seasonally ad- 
justed and nonseasonally adjusted (NSA) industrial production data.” An- 
other specialized series examined is the quarterly average unemployment rate, 
which has cyclical movements closely related to those of aggregate output. The 

“Ghysels (1987) argues that the smoothing effects of seasonal adjustment filters might lead to 
spurious unit-root-like behavior in seasonally adjusted series. 
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persistence of unemployment has been the focus of recent work on employ- 
ment hysteresis, such as Blanchard and Summers (1986). 

While real GNP is the most comprehensive macroeconomic indicator, on a 
quarterly basis it is only available from the National Income and Product 

Accounts (NIPA) for the last forty years. Annual GNP data, which have been 
constructed by a variety of researchers, provide a span of up to 120 years, and 
previous investigations using such long annual series have found less shock 
persistence than in the post-war quarterly data.12 In light of this, we examine 
the long annual series of real net national product (NNP), as reported in 
Friedman and Schwartz (1982, table 4.8),13 and real GNP, as reported in 
Romer (1989) and in Balke and Gordon (1989).14 In addition, we examine two 
annual real output per capita series: real NNP per capita from Friedman and 
Schwartz (1982, table 4.8) and real GNP per capita from Long-Term Economic 

Growth (1973) spliced in 1929 to the annual NIPA record. 
In summary, we examine a variety of real macroeconomic time series at 

quarterly and annual frequencies and in level and per capita terms. This range 
of combinations enables us to explore the robustness of our results. As a first 
step, we obtain estimates of the fractional-integration parameter d for each of 
the ten series. We then focus our attention on the leading case of post-war 
quarterly real GNP per capita and examine persistence through the sequence 
of cumulative impulse responses, C. The sensitivity of our results is then 
examined. 

5.1. Estimation of d 

Table 2 reports d estimates for all ten measures of aggregate economic 
activity along with asymptotic standard errors and the associated p values for 
the u,nit-root null hypothesis (d = 1). The asymptotic standard errors are 
constructed using the known theoretical GPH regression error variance of 
n2/6 to increase efficiency. l5 The p values give the asymptotic probability, 
under the null hypothesis that d = 1, of obtaining the estimated d value; they 
are against the one-sided alternative d < 1. The number of low-frequency 

“See, for example. Cochrane (1988). Recent annual data are also more accurate than the 
quarterly series, which interpolate a substantial portion of detail from annual surveys [see Carson 
(1987)J However, important information contained in short-run, high-frequency fluctuations may 
be lost in the annual series. 

13The Friedman and Schwartz series, which is net of a capital consumption allowance. is widely 
mislabeled as gross national product in the literature. 

14As part of a debate that focuses primarily on cyclical volatility, Romer (1989) and Balke and 
Gordon (1989) have each constructed revised estimates of real GNP before 1929 based on 
reassessments of the sources and assumptions underlying previous estimates of early GNP. 

“The Monte Carlo evidence presented by Geweke and Porter-Hudak (1983) and Diebold and 
Rudebusch (1989b) indicates that asymptotic normality is a good approximation for the sample 
sizes considered here. 
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Table 2 

Estimates of d.” 

a 

Data series and source 0.5 0.525 0.55 

Real NNP 
1869-1975 
[Friedman and Schwartz (1982)] 

Real GNP 
1869-1987 
[Romer (1989)] 

Real GNP 
1869-1987 
[Balke and Gordon (1989)] 

Real NNP, per capita 
1869-1975 
[Friedman and Schwartz (1982)] 

Real GNP, per capita 
1900-1986 
[Long-Term Economic Growth] 

Real GNP 
1947:Ql-1987:Q2 
[NIPA] 

Real GNP, per capita 
1947:Ql-1987:Q2 
[NIPA] 

Industrial Production 
1919:Ql-1987:Q2 
[Federal Reserve Board] 

Industrial Production, NSA 
1919:Ql-1987:Q2 
[Federal Reserve Board] 

Civilian Unemployment Rate 
1948:Ql-19X7:42 
[Bureau of Labor Statistics] 

Annual series 

0.61 
(0.29) 

p = 0.19 

0.59 
(0.27) 

p = 0.06 

0.50 
(0.27) 

p = 0.03 

0.52 
(0.29) 

p = 0.05 

0.65 
(0.32) 

p = 0.14 

QuurterJv series 

0.90 
(0.24) 

p = 0.34 

0.68 
(0.24) 

p = 0.09 

0.85 
(0.19) 

p = 0.21 

0.84 
(0.19) 

p = 0.20 

0.72 
(0.24) 

p = 0.12 

0.61 
(0.26) 

p = 0.07 

0.70 
(0.26) 

p = 0.13 

0.71 
(0.26) 

p = 0.13 

0.48 
(0.26) 

p = 0.02 

0.57 
(0.29) 

p = 0.07 

0.61 
(0.24) 

p = 0.05 

0.65 
(0.23) 

p = 0.06 

0.64 
(0.23) 

p = 0.06 

0.49 
(0.24) 

p = 0.02 

0.55 
(0.26) 

p = 0.04 

0.92 
(0.23) 

p = 0.36 

0.72 
(0.23) 

p = 0.11 

0.86 
(0.19) 

p = 0.23 

0.86 
(0.19) 

p = 0.23 

0.65 
(0.24) 

p = 0.06 

0.88 
(0.21) 

p = 0.28 

0.71 
(0.21) 

p = 0.08 

0.81 
(0.17) 

p = 0.13 

0.80 
(0.17) 

p = 0.12 

0.71 
(0.21) 

p = 0.08 

“The sample size for the GPH spectral regression is T”. All variables except the unemployment 
rate are in logarithms, and quarterly variables are seasonally adjusted except for Industrial 
Production. NSA. The standard errors given in parentheses are constructed imposing the known 
theoretical regression error variance of a*/6. The p values for the unit-root null hypothesis 
(d = 1) are against the one-sided alternative d < 1. 
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periodogram ordinates included in the GPH regression introduces a judgemen- 
tal aspect: improper inclusion of medium-frequency ordinates will contami- 
nate the estimate of d, while too small of a regression sample will lead to 
imprecise estimates. Table 2 reports d estimates for each series for three 
different regression sample sizes. The sample sizes are equal to T*, for (Y = 0.5, 
0.525, and 0.55. The estimates of the order of fractional integration are quite 
robust across this variation. 

While the d estimate for quarterly per capita GNP is about 0.7, quarterly 
GNP yields a higher estimate of 0.9, suggesting, not surprisingly, more 
persistence. l6 The annual national output series, which span more time, have 
smaller d estimates; ranging from 0.5 to 0.65, depending on the particular 
series. Romer’s GNP series has an estimated fractional-integration parameter 
very similar to those of the other annual series. The estimated d for quarterly 
industrial production is close to that for quarterly GNP, and seasonal adjust- 
ment makes virtually no difference. Finally, quarterly unemployment exhibits 
a fractional-integration parameter of about 0.70. 

The evidence from all of these series should be considered, as each provides 
a different perspective on the persistence of shocks to aggregate economic 
activity. The point estimates of d are quite striking, as all are less than unity, 
and some are very much less than unity; however, as we shall discuss below, 
the standard errors for these estimates are quite large. The results call for a 
deeper exploration of the nature of low-frequency economic dynamics.” In 
particular, the knife-edged parameterizations ‘d = 1’ and ‘d = 0’, which arise in 
standard ARIMA modeling and are the implicit subject of the unit-root 
literature, may be overly restrictive. In what follows, we focus on the leading 
case of interest, quarterly real GNP per capita. We first estimate the remaining 
ARFIMA model parameters; then, we proceed to construct persistence esti- 
mates and investigate their robustness. 

5.2. Estimation of cumulative impulse responses 

Computation of the sequence of cumulative impulse responses requires 
estimation of all of the parameters of the ARFIMA( p, d, q) model. For 
quarterly per capita real GNP (denoted hereinafter as QY82PC), the GPH 

“For post-war quarterly per capita real GNP, fig. 1 provides the complete range of estimates of 
d obtained for increasing numbers of periodogram ordinates included in the GPH regression. The 
number of periodogram ordinates corresponding to the square root of the sample size is indicated 
with a vertical dashed line. 

“Moreover. one might conjecture that standard unit-root tests, described in section 2, may have 
low power against fractional alternatives. This appears to be the case; see Diebold and Rudebusch 
(1989b). 
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Table 3 

Model seIection criteria, log of quarterly real GNP per capita (QY82PC).a 

ARFIMA( p, d.q) model: (1 - L)’ 7@( L)QY&?PC, = O( L)E, 

Number of AR 
parameters ( p) 

Number of MA parameters (9) 

0 1 2 3 

0 927.165 981.278 1008.250 1017.190 
924.083 975.115 999.007 1004.870 

1 1016.720 1015.440 1018.520’ 1017.550 
1010.560h 1006.190 1006.190 1002.140 

2 1015.800 1013.740 1017.280 1015.790 
1006.550 1001.410 1001.870 997.299 

3 1018.090 1016.230 1018.180 1016.340 
1005.770 1000.830 999.689 994.770 

“For each model. we report the Akaike Information Criterion (21n L - 2k) and, below that, the 
Schwartz Information Criterion (21n L - k In T). 

‘Maximum SIC value. 
‘Maximum AIC value. 

regression results suggest a fraction-integration parameter in the range of 0.7; 
thus, we transform the data by applying the filter (1 - L))“.3 to the first-dif- 
ferenced series. To capture the remaining short-run dynamics, we consider 
ARMA models with up to three autoregressive parameters and three moving- 
average parameters. We distinguish these models through the Akaike and 
Schwarz information criteria (AIC and SIC, respectively), which are differen- 
tiated by their degrees-of-freedom adjustment of the maximized log-likelihood 
function. Table 3 reports the selection criteria for the sixteen models under 
consideration, ranging from white noise to ARMA(3,3). The Akaike criterion 
identifies an ARMA(l,2), while the Schwarz criterion identifies a more parsi- 
monious ARMA(1,O). Like Campbell and Mankiw (1987a), we are not inter- 
ested in selecting one ‘best’ model of short-run fluctuations in GNP; rather, 
we seek robust evidence from a variety of models on the effects of economic 
shocks and use the information criteria for guidance. 

Table 4 provides the estimated cumulative impulse responses for all sixteen 
ARFIMA( p,O.70, q) models of QYSZPC. These responses demonstrate the 
effect of a unit growth rate innovation on the level of output k periods hence, 
with k ranging from 1 to 400 quarters. The cumulative impulse responses are 
hump-shaped, with initial shock magnification, followed by shock dissipation. 

The maximum ck value occurs at less than 8 quarters; after 16 quarters the 
cumulative impulse response has fallen back to approximately unity. By fifty 
quarters out, the response has dropped to about 0.7, and after one hundred 
quarters. it is less than 0.6 and continues to decline. These results are robust to 
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Table 4 

Cumulative impulse responses, ARFIMA( p,O.7, q) model, QY??JPC. 

(1 - L)“@(L)QYHPc, = O(L)e, 

Model 
P. 4 1 2 4 

Quarters 

8 16 50 100 400 

0.1 1.175 0.927 0.750 0.609 0.494 0.351 
0,2 1.260 1.372 1.024 0.815 0.657 0.464 
0.3 1.262 1.506 1.314 1.014 0.809 0.569 
1,O” 1.359 1.491 1.497 1.295 1.023 0.707 

1,l 1.324 1.472 1.529 1.377 1.099 0.753 
1,2h 1.304 1.591 1.563 1.280 1.003 0.697 

1,3 1.306 1.602 1.544 1.188 0.938 0.657 
2.0 1.306 1.46R 1.544 1.411 1.133 0.774 

2,l 1.356 1.477 1.439 1.120 0.654 0.068 

2>2 1.307 1.605 1.538 1.149 0.912 0.640 
2.3 1.308 1.603 1.504 1.113 0.888 0.623 

3,O 1.319 1.591 1.556 1.209 0.943 0.660 
3.1 1.316 1.589 1.559 1.171 0.911 0.641 
3.2 1.316 1.600 1.543 1.280 0.990 0.687 
3,3 1.309 1.600 1.547 1.332 1.027 0.710 

0.285 
0.377 
0.461 
0.571 
0.608 
0.564 
0.532 
0.624 

-0.564 - 
0.518 
0.505 
0.535 
0.520 
0.556 
0.574 

0.188 
0.248 
0.304 
0.375 
0.399 
0.371 
0.350 
0.410 
0.014 
0.341 
0.333 
0.352 
0.342 
0.365 
0.378 

“Selected by the SIC. 
hSelected by the AIC 

the particular values of p and q chosen. lx It is interesting to note that our 
estimates of the long-run cumulative impulse response are closer to those 
obtained in other studies using UC models (although we do not impose their 
implicit restrictions), than to the shock magnification results obtained with 
ARIMA models. The short-run hump-shaped cumulative impulse-response 
pattern is very similar across all three classes of models; they differ, however, 
in their implied medium- and long-run dynamics. 

Thus far, we have shown that the point estimates of the cumulative impulse 
responses are typically smaller than estimates obtained from ARIMA repre- 
sentations and are highly robust to the form of the second-stage ARMA model 
fitted. Also of interest is the sensitivity of the point estimates of the cumulative 
impulse responses to the first-stage estimate of d, obtained from the GPH 
regression, upon which we condition. The results of such a sensitivity analysis 
are contained in table 5 for quarterly per capita real GNP. For each d value, 

“The exception is the ARFIMA(2,0.7,1), where the AR and MA polynomials have an 
approximate common factor of unity, which forces an estimated long-run cumulative response of 
zero. Both information criteria detect the redundancy and favor ARFIMA(1,0.7,0) models. The 
unit moving-average root most likely reflects the ‘pileup’ problem [see Diebold and Nerlove 
(1989)]. 
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Table 5 

Shock persistence in estimated ARFIMA( p, d, 9) models, QY8,?PC.a 

Fractional integration 
parameter (d ) _ 

Stationary model 

ARh4A( p, 4); AK, SIC 

Persistence measures 

cl6 CSO c400 

1.0 (2.2); 1018.28, 1002.87 1.50 1.50 1.50 
(1.0); 1014.96, 1008.80 1.57 1.57 1.57 

0.90 (2,2); 1019.05, 1003.64 1.24 1.10 0.90 
(0,3); 1019.68, 1007.35 1.40 1.24 1.01 
(1.0); 1016.54, 1010.38 1.32 1.17 0.95 

0.85 (2.2): 1019.22, 1003.82 1.13 0.95 0.69 
(0.3): 1018.42, 1003.01 1.23 1.03 0.76 
(1.0); 1017.12, 1010.96 1.21 1.02 0.74 

0.80 (2,2); 1019.09, 1003.68 1.03 0.82 0.54 
(0,3); 1020.24, 1007.91 1.08 0.85 0.56 
(l,O); 1017.43, 1011.27 1.13 0.89 0.58 

0.75 (2.2); 1018.49, 1003.09 0.96 0.72 0.43 
(0,3); 1019.38, 1007.05 0.94 0.70 0.41 
(1.0); 1017.34, 1011.18 1.06 0.79 0.46 

0.70 (2,2); 1017.28, 1001.87 0.91 0.64 0.34 
(1.2); 1018.52, 1006.19 1.00 0.70 0.37 
(1.0); 1016.72, 1010.56 1.02 0.71 0.38 

0.65 (2.2); 1015.37, 999.97 0.90 0.59 0.28 
(1,2); 1016.95, 1004.62 0.97 0.63 0.30 
(1.0); 1015.50, 1009.34 1.02 0.66 0.31 

“For each model, we report the AIC, 21n L - 2k, and the SIC, 21n L - h In T. The 
ARFIMA( p, d, 9) model, (1 - L)“y = ARMA( p, 9), is estimated conditional on d. Up to three 
ARMA stationary models are reported for each d: the ARMA(2,2) and those selected by the AIC 
and SIC. The measure of persistence, ck, is the sum of the first k coefficients of the moving-aver- 
age representation of the first-differenced series. 

we report the estimates of ci6, Cam, and cdoo for the ARFIMA(2, d,2) model 
and, if not redundant, two other ARFIMA models corresponding to those 
selected by the AIC and SIC. Recall the preferred d value as estimated via the 
GPH spectral regression is 0.70, and the associated cumulative impulse re- 
sponses in table 5 summarize the persistence estimates given in table 4. The 
estimated cumulative impulse responses are highly dependent upon d; in 
particular, forcing a unit root on the data (i.e., imposing d = 1) leads to large 
long-run persistence estimates, on the order of 1.5, which is what Campbell 
and Mankiw (1987a) report. This inflates the preferred estimate of c4m. 
corresponding to d = 0.7, by a factor of four, and it inflates the preferred 
estimate of csO by a factor of two. 

The information provided by the point estimates of C obtained from 
ARFIMA models is useful in that it represents a ‘best guess’ at the shape of 
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C, based upon a generalized approximation to the Wold representation. The 
results also indicate, however, that the inrerual estimates associated with the 
long-run response are wide. To approximate k% confidence intervals for the 
elements of C, we can vary d over its k% confidence range (obtained by 
exploiting the asymptotic normality of the first-stage GPH estimate) and 
condition upon estimated @ and 0 values at each d value.” The sensitivity of 
the estimated cumulative impulse responses to the estimate of d, together with 
the standard errors of the d estimates reported in table 2, imply that interval 
estimates of the cumulative impulse responses will be quite wide. Clearly, 
varying the d estimate across just one standard error will encompass both 
long-run shock magnification as well as dissipation. The wide confidence 
intervals underscore a fundamental econometric reality: precise inference 
about low-frequency behavior is very difficult given the short time series 
available in macroeconomics. One hundred years of data can provide only one 
independent observation about the long-run response one hundred years 
hence. 

6. Summary and conclusions 

We examine persistence in U.S. real output using a generalized approxima- 
tion to the Wold representation. Our application of long-memory models, 
associated with fractional integration via the operator (1 - L)d and noninteger 
d, allows flexible modeling of low-frequency behavior, with important implica- 
tions for the measurement of macroeconomic shock persistence. Evidence of 
long memory is found in all of the macroeconomic series studied, though it is 
not necessarily associated with a unit root, as estimated d values range from 
0.5 to 0.90. Furthermore, the knife-edged cases of ‘unit root’ and ‘no unit 
root’, which correspond to d = 1 and d = 0, respectively, lose their exaggerated 
importance once d is allowed to vary on a continuum. 

Post-war real GNP per capital is investigated in detail, and estimated 
long-run responses to a unit innovation are shown to depend crucially on d. 
Using d estimates obtained from a spectral regression procedure, an estimated 
50-quarter cumulative impulse response of roughly 0.7 is obtained. For GNP 
at annual frequencies, the estimates of d suggest even less persistence. In 
short, the point estimates strongly suggest that aggregate shocks are partially 
dissipated, not magnified. 

However, and most importantly, we argue that the confidence intervals 
associated with any univariate persistence estimates are likely to be quite 

“Two implicit, and potentially offsetting, assumptions underlie this approximation. The first is 
that the elements of C are monotone in d, which is the case in table 5 but need not be true in 
general. Second, we ignore stochastic variation in the elements of C associated with variability of 
the second-stage @ and 0 estimates. 
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wide.20 Even when conducted on a common data sample as in Stock and 
Watson (1988) various modeling methodologies provide very different persis- 
tence estimates. The UC representations, which contain restrictions on low- 
frequency behavior, produce low estimates of macroeconomic persistence. 
When the UC restrictions are relaxed by using ARIMA models, larger 
persistence estimates are obtained. However, when the ARIMA restrictions 
are relaxed to consider fractional integration, persistence point estimates again 

fall. This is consistent with misspecification in the unit-root models (UC or 
ARIMA). However, the confidence we can place in any estimate of the 
long-run response is low because there are so few independent observations on 
long-run behavior available in the data. 

Appendix: The Geweke and Porter-Hudak (1983) theorem 

Suppose { y } is an ARFIMA( p, d, q) process, with d < 0. Let 1(X,_ r) 
denote the periodogram of { y } at the harmonic frequencies 
a sample of size T. Let b,,r denote the OLS estimator of & 
equation 

In( I(h,,,)} =P0+& ln(4Sin2(~j,d2)] + uj,T, 

I . ; 
h,, T = 2rj/T m 
in the regression 

j=l ,..., K. 

Then there exists a function g(T), which will have the properties limr, ,g( T) 
= 00, lim,_,g(T)/T= 0, such that if K= g(T), then plim b, = -d. 
If lim r_,(ln(T))‘/g(T) = 0, then (b, + d)/{v~r(bt)}1/2 3 N(0, l), where 
v&(b,) is the usual OLS estimator, i.e., the (2,2) entry of s2( X’X)-‘. 
Furthermore, under the stated conditions, plim s2 = 7r2/6. 
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